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1 Introduction

Several papers have analyzed the Cournot market game in a broader context, explicitly

accounting for the firms’ access to commitment devices such as delegation of sales (as

analyzed by Vickers (1985) and Fershtman and Judd (1987)), or the strategic use of forward

contracts (Allaz and Vila (1993)). All those devices allow firms to commit to a more

aggressive sales strategy which, however, puts them into a prisoner’s dilemma situation: In

equilibrium they voluntarily use the commitment device and end up worse off than in its

absence. Inspired by those findings, policy recommendations have been made that aim at

the implementation of appropriate institutions to mitigate market power. For example, in

the electricity sector the introduction of forward markets has been promoted in response

to that literature.1

In this paper we analyze the interdependence between strategic devices as described

above and the firms’ capacity choices. In our model capacity levels are long run decisions

that affect the firms’ production possibilities for a certain time interval. That is, after firms

have chosen their capacities they compete on many subsequent Cournot spot markets with

fluctuating demand. We compare the outcome of this (multi stage) Cournot market game

to the outcome of a game where firms can trade on forward markets before they make their

final output decisions.2 We find that total capacity in equilibrium generally decreases if

firms have access to forward markets. Our analysis has two important implications (1) The

access to strategic devices reduces the incentives to invest in capacity in an industry. Thus,

investment levels predicted under the Cournot hypothesis are generally too high whenever

firms have access to strategic devices that allow them to commit to a more aggressive

behavior (which is almost always the case).3 (2) In industries where capacity cannot easily

be adjusted at short notice, the access to strategic devices may actually increase average

prices (and thus, decrease welfare), contrary to what is predicted in the absence of capacity

constraints.

In order to develop a rough intuition for the result note that, as the spot market outcome

becomes more competitive, marginal revenue generated by an additional unit of capacity

decreases. That is, mitigating market power at the spot market makes being constrained

more attractive and consequently reduces investment. A more detailed analysis of the

problem moreover shows that also the strategic complexity of the game grows considerably

1See e.g. Newbery (1998) or Bushnell (2005).
2Alternatively, one could analyze delegation of sales, which would yield the same results.
3This is particulary important for economic modeling issues.
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with the introduction of strategic devices. In particular, for a wide range of investment levels

chosen by the firms, we find that the subgames starting where firms choose their forward

contracts have multiple equilibria. Thus, contrary to the Cournot multistage market game

without forward contracts, uniqueness of equilibrium cannot be established.

Our research is connected to various branches of the economic literature. In recent

years, investment incentives have become focal in the policy debate on electricity markets,

which gave rise to a variety of papers analyzing this issue.4 In response to the common

perception of too low investment incentives, various mechanisms have been proposed to

raise capacities.5 However, investment incentives in imperfectly competitive markets have

been analyzed by only a few authors. Within a linear duopoly framework, Gabszewicz and

Poddar (1997) analyze capacity choices prior to Cournot competition. A general analysis

of investment under imperfect competition is provided in Grimm and Zoettl (2006). There

we show that investment incentives in oligopoly are generally too low and that they even

decrease if the spot market is regulated to a more competitive outcome. This is in line with

the result of the current paper. Notice that the effect can only be found under fluctuating

demand. In a model with certain demand, Murphy and Smeers (2005) show that the

introduction of a forward market does not affect the investment choice compared to regular

Cournot competition. The reason is that in this case firms can exactly determine the spot

market outcome already by their investment decision.

There are some papers that identify other reasons why forward markets may not be

welfare enhancing. Liski and Montero (2004) show that if we consider an infinite horizon

oligopoly, collusive outcomes can be sustained easier in the presence of forward markets.

Mahenc and Salanie (2004) show that the access to forward contracts in a Bertrand market

game with differentiated products increases equilibrium prices. As our result does, those

results put into question the welfare enhancing effect of forward markets found by Allaz

and Vila (1993).

The paper is organized as follows: In section 2 we state the model. In section 3 we

analyze the game without forward contracts. Section 4 analyzes the game in the presence

of forward markets and compares the results of the two scenarios. Section 5 concludes.

4The sector has attracted wide attention due to shortages of transmission and/or generation capacity

that provoked serious breakdowns of electricity power supply in several countries. Among the most promi-

nent examples are the California crisis (Summer of 2000), or the great blackout which in 2003 knocked out

power to 50 million people over a 9,300-square-mile area stretching from New England to Michigan.
5see e. g. Cramton and Stoft (2005), or Bushnell (2005b) for an overview.
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2 The Model

We analyze a duopoly where firms have to make a capacity choice before they compete on

a continuum of successive spot markets. Prior to production, but after capacities have been

chosen, they have the possibility to trade forward contracts, by which they commit to sell

a certain quantity on a specific spot market at a fixed price. The situation we have in mind

is captured by the following three stage game:

At stage one each firm i, i = 1, 2, invests in capacity xi ∈ R+, i = 1, 2, at a unit cost k

(firms are assumed to be symmetric with respect to their cost of investment).

At stage two, having observed the capacity choices x = (xi, x−i),
6 for each spot market

t ∈ [0, T ] firms have the possibility to sell any quantity up to their capacity on the forward

market at a fixed price. Forward contracts f(t) = (fi(t), f−i(t)) are sold in an arbitrage-free

market.7

At stage three firms face the capacity constraints inherited from stage one and hold the

forward positions from stage two. They simultaneously choose outputs for each spot market

t ∈ [0, T ], denoted by y(t) = (yi(t), y−i(t)). Demand at time t, P (Y, t), has the functional

form8 P (Y, t) = at − Y (t), where Y (t) = yi(t) + y−i(t) is the aggregate quantity produced

by the two firms at time t, a ≥ 0, and t ∈ [0, T ].Both firms have the same marginal cost

of production which is assumed to be constant. Without loss of generality we normalize

marginal cost to zero.

Firm i’s profit from operating in the time interval [0, T ] if capacities and forwards are

given by x and f(t) and firms have chosen feasible9 production schedules y(t), is given by

πi(xi, y) =

∫ T

0

[at− (yi(t) + y−i(t))] yi(t)dt− kxi. (1)

The game we consider is a three stage game with observability after each stage. We look

for subgame perfect Nash equilibria in pure strategies. The assumption that spot market

quantities for the entire interval [0, T ] have to be chosen simultaneously prior to t = 0 is

made for expositional simplicity. All results are still true if firms can choose production

6We denote by −i the firm other than i.
7Since we analyze the case of demand certainty we are interested in forward contracts as a strategic

device, as introduced by Allaz and Vila (1993).
8The majority of the contributions to the topic we analyze concentrate on the case of linear demand.

Examples are Fershtman and Judd (1987), Vickers (1985), Allaz and Vila (1993), or Murphy and Smeers

(2004).
9That is, fi(t) ≤ yi(t) ≤ xi for all t ∈ [0, T ], i = 1, 2.
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schedules for the subsequent time interval at finitely many points within the time interval

[0, T ].

3 Equilibrium without Forward Contracts

In this section we analyze the game without the possibility to trade forward contracts. This

is equivalent to exogenously fix forwards at f(t) = 0 for all t. Thus, we have a two stage

game where firms invest at stage one and decide upon quantities at stage two. We derive

the subgame perfect equilibrium of the game by backward induction, that is, we first solve

for the equilibria at stage two and then derive equilibrium capacity choices given that firms

anticipate equilibrium play at stage two.

Stage II First note that for given investment levels x we can solve the maximization

problem of firm i pointwisely. That is, firm i’s profit as given by (1) is maximized whenever

the integrand is maximized at each t ∈ [0, T ].10 Thus, an equilibrium y∗(x, t) satisfies

simultaneously for both firms and for each t ∈ [0, T ]

y∗i (x, t) ∈ arg max
y

{[

at− (y + y∗−i(t))
]

y
}

s.t. 0 ≤ y ≤ xi.

The above considerations imply that an equilibrium of the game at stage two,

(y∗i (x, t), y
∗
−i(x, t)), is given by the equilibrium outputs of the capacity constrained Cournot

games at each t ∈ [0, T ].

Throughout the following analysis we assume that firm i’s investment is (weakly) lower

than firm −i’s. It is easy to show that the firms’ unconstrained reaction functions at time t

have the from ỹBR
i (y−i, t) = at−y−i

2
and that the unconstrained Cournot equilibrium is that

both firms produce ỹ∗i (t) = at
3
, i = 1, 2. Depending on how much the firms have invested at

stage one relative to the demand realization at time t, we have to distinguish three cases.

(CN) No firm is constrained if xi ≥ ỹ∗i (t) = at
3
, i = 1, 2, i. e. each firm’s unconstrained

Cournot quantity is lower than its maximal possible output given the capacity choices.

Obviously, this is the case whenever 0 ≤ t ≤ 3xi

a
, i = 1, 2. In this interval the equilib-

rium of the second stage corresponds to the unconstrained Cournot Nash equilibrium

10Any function ŷ(t) that differs from y∗(t) at a finite number of points also maximizes π. However, note

that this does not affect the optimal investment.
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(denoted EQCN ):

t ∈
[

0,
3xi

a

)

⇔ y∗i (x, t) =
at

3
, i = 1, 2.

Equilibrium profits are

πCN
i (x, t) =

(

at

3

)2

, i = 1, 2.

(Ci) Firm i is constrained if t > 3xi

a
and therefore xi ≤ at

3
. In this case firm i cannot

play its unconstrained Cournot output, but will produce at capacity. As long as firm

−i is not yet constrained, it will play its best response to firm i producing xi, that

is ỹBR
−i (xi, t) = at−xi

2
. This implies that firm −i is unconstrained for all t ≤ 2x−i+xi

a
.

Thus, if t ∈ (3xi

a
, 2x−i+xi

a
], in equilibrium the low-capacity firm i produces at capacity,

but firm −i does not (denoted EQCi).

t ∈
[

3xi

a
,
2x−i + xi

a

)

⇔
[

y∗i (x, t), y
∗
−i(x, t)

]

=

[

xi,
at− xi

2

]

.

Equilibrium profits are

πCi
i (x, t) =

(

at− xi

2

)

xi, πCi
−i(x, t) =

(

at− xi

2

)2

.

(CB) Both firms are constrained for demand realizations higher than t = 2x−i+xi

a
. In

this case in equilibrium both firms produce at capacity (denoted EQCB).

t ∈
[

2x−i + xi

a
, T

]

⇔ y∗i (x, t) = xi, i = 1, 2.

Equilibrium profits are

πCB
i (x, t) = (at− xi − x−i) xi, i = 1, 2.

As we already mentioned in section 2 the results do not change if we allow the firms

to choose production schedules at a finite number of points in time. This is obvious since

due to uniqueness of the equilibrium at stage two for each t, only playing y∗i (x, t) satisfies

subgame perfection.

Figure 1 illustrates the results for a particular demand realization t.
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Figure 1: Nash equilibria at stage two of the market game without forward contracts.

Stage I For a given t, figure 1 shows which type of equilibrium exists for each given pair

of investment levels, x. Building on these results we can now derive firm i’s profit from

investing xi, given that the other firm invests x−i and quantity choices at stage two are given

by y∗. A firm’s profit from given levels of investments, x, is the integral over equilibrium

profits at each t given x on the domain [0, T ]. For each t, firms anticipate equilibrium play

at stage two, which gives rise to one of the three types of equilibria, EQCN , EQCi, or EQCB.

Note that any x > 0 gives rise to the unconstrained equilibrium if t is close enough to zero.

An increase of t corresponds to a dilation of all regions outwards with center zero. Thus, a

pair of investment levels that initially gave rise to an EQCN leads to an equilibrium where

one firm is constrained (either EQCi if x−i > xi or EQC−i if if xi > x−i) for a higher t. As

t increases even more, x finally is located in the region where both firms are constrained

(EQCB). For investment levels where both firms are constrained in the highest demand
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scenario the profit function is given by11

πU
i (x, y∗) =

∫

3x
−i

a

0

πCN
i dt+

∫

2xi+x
−i

a

3x
−i

a

πC−i
i dt+

∫ T

2xi+x
−i

a

πCB
i dt− kxi (2)

=
(aT − x−i)(aT − x−i − 2xi)xi

2a
+
x3
−i + 2x3

i

3a
− kxi

for xi ≥ x−i and xi ≤ aT−x−i

2
(denoted region U), and

πD
i (x, y∗) =

∫

3xi

a

0

πCN
i dt+

∫

xi+2x
−i

a

3xi

a

πCi
i dt+

∫ T

xi+2x
−i

a

πCB
i dt− kxi (3)

=
(aT − xi)(aT − 2x−i − xi)xi

2a
+
xi x

2
−i

a
− kxi.

for xi ≤ x−i and x−i ≤ aT−xi

2
(denoted region D).

Notice that for xi = x−i we obtain π
U
i = π

D
i , implying that the profit function πi(x, y

∗)

is continuous for all x. Given y∗(x, t) we can now derive the equilibrium of stage one which

yields the subgame perfect equilibrium of the two stage game.

Proposition 1 The market game where firms first invest in capacity and then engage in

quantity competition in a continuum of spot markets has a unique subgame perfect Nash

equilibium. In equilibrium firms invest

x∗i =
1

3

(

aT −
√

2ak
)

, i = 1, 2.

They produce the unconstrained Cournot best reply quantities at stage two whenever this is

possible, and at capacity otherwise.

Proof: see Appendix A.

Since the main objective of the paper is to compare the level of total investment with

and without forward markets, we define

INF = {x ∈ R
2
+ : xi + x−i =

2

3
(aT −

√
2ak)}. (4)

The isoinvestment line INF contains all investment levels xi, x−i leading to the same total

investment as the equilibrium of the the market game without forward contracts we analyzed

in this section. Best reply functions at stage one and the isoinvestment line are depicted in

figure 2.

11For investment levels where one firm is unconstrained at the highest demand realization the last integral

has to be dropped and the upper limit of the second integral has to be substituted by T (regions U
I

and

D
I

in figure 2). If both firms are unconstrained at the highest demand realization the two last integrals

have to be dropped and the upper limit of the first integral has to be substituted by T (regions U
II

and

D
II

).

8



Figure 2: Best replies, equilibrium, and the isoinvestment line INF for the market game

without forward contracts.

4 Equilibrium with Forward Contracts

If we include forward markets, we have to analyze the three stage game already described

in section 2, where prior to production but after investments have been made, forwards can

be traded.

The impact of forward markets on Cournot competition has already been analyzed by

Allaz and Vila (1993). In section 4.1 we extend the analysis to the presence of capacity

constraints. In section 4.2 we will use the subgame perfect equilibria of the parameterized

subgames starting at stage two in order to characterize equilibrium investments at stage one

(prior to a continuum of Cournot markets) and compare them to equilibrium investments

in the market game without forward markets.
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4.1 Forward Trading in the Presence of Capacity Constraints

Stage III In each subgame starting at stage three, firms have observed investment levels

x = (xi, x−i) and the quantities traded forward, f(t) = (fi(t), f−i(t)). Again, firm i’s profit

as given by (1) is maximized whenever the integrand is maximized at each t ∈ [0, T ]. Thus,

an equilibrium of stage three satisfies simultaneously for both firms and for each t ∈ [0, T ]12

y∗i (x, f, t) ∈ arg max
y≥0

{(at− y − y∗−i)(y − fi(t))} s.t. fi(t) ≤ y ≤ xi. (5)

Note that y∗i (t) only depends on the forwards traded for period t, f(t).

Now we solve for the equilibrium of stage three. As a first step we ignore the capacity

constraint and derive the best reply of firm i to a given quantity produced by −i,

ỹBR
i (y−i; f, t) =

at+ fi − y−i

2
, i = 1, 2. (6)

Thus, the equilibrium of the unconstrained market game at stage three is

ỹ∗i (f, t) =
at+ 2fi − f−i

3
, i = 1, 2.

From equations (5) and (6) immediately follow the capacity constrained best reply-

functions,

yBR
i (y−i; x, f, t) = min

{

ỹBR
i (y−i; f, t), xi

}

, i = 1, 2.

It is straightforward to show that for each (x, f, t) the equilibrium13

{y∗i (x, f, t), y∗−i(x, f, t)} of stage three is unique. Depending on the values of x, f ,

and t, none of the firms, one of them, or both are capacity constrained in equilibrium. We

now become specific on equilibrium quantities and profit functions in each of those cases:

(CN) No firm is constrained if for both firms the unconstrained Cournot quantities given

f are lower than capacity. This holds true, whenever

xi > ỹ∗i (f, t), i = 1, 2. (7)

We denote by FCN(x, t) the set of all f for which both inequalities in (7) are satisfied

at (x, t). For all f ∈ FCN(x, t), equilibrium quantities at stage three are y∗i (x, f, t) =

ỹ∗i (f, t), i = 1, 2, and equilibrium profits are

πCN
i (x, f, y∗, t) =

(at− fi − f−i)(at+ 2fi − f−i)

9
. (8)

12With a slight abuse of notation, we use the same symbols as in the case without forward contracts.
13Nash equilibrium in pure strategies.
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(Ci) Only firm i is constrained if firm i’s unconstrained Cournot quantity given f

exceeds its capacity, but firm −i is not constrained in equilibrium. This holds true,

whenever

xi ≤ ỹ∗i (f, t) and x−i ≥ ỹBR
−i (xi; f, t). (9)

We denote by FCi(x, t) the set of all f for which both inequalities are satisfied at

(x, t). For all f ∈ FCi(x, t), equilibrium quantities at stage three are y∗i (x, f, t) = xi,

y∗−i(x, f, t) = ỹBR
−i (xi; x, f, t) ≤ x−i. Equilibrium profits are

πCi
i (x, f, y∗, t) =

xi(at− f−i − xi)

2
. (10)

πCi
−i(x, f, y

∗, t) = =
(at− xi)

2 − f 2
−i

4
. (11)

(CB) Both firms are constrained if they cannot play their unconstrained best reply

given the other firm produces at capacity. This holds true, whenever

xi ≤ ỹBR
i (x−i; f, t), i = 1, 2.

We denote by FCB(x, t) the set of all f for which both inequalities are satisfied at

(x, t). For all f ∈ FCB(x, t), equilibrium quantities at stage three are y∗i (x, f, t) = xi.

Equilibrium profits are

πCB
i (x, f, y∗, t) = (at− xi − x−i)xi, i = 1, 2. (12)

Stage II Now we derive all subgame perfect equilibria of the parameterized subgames

starting at stage two. Again, given investment levels and equilibrium play at stage three,

we can solve pointwisely for the equilibria at stage two for each t ∈ [0, T ].

It is important to notice that uniqueness of the equilibrium at stage three implies that

for each investment level x, the sets FCB(x, t), FCi(x, t), FC−i(x, t), and FCN(x, t) partition

the set F = [0, xi] × [0, x−i] of all feasible levels of forward trades given x. For each set,

we can now characterize the subgame perfect equilibria (f ∗, y∗). Within each set, any

equilibrium leads to unique quantities y∗ at stage three, that may, however, be supported

by various quantities of forward contracts traded at stage two. Lemmas 1 to 3 state the

equilibrium quantities, as well as the values of x for which an equilibrium exists in the

different regions. The proofs are relegated to appendix B.

Lemma 1 (No firm is constrained)

(i) If f ∗(x, t) ∈ FCN(x, t), then y∗i (f
∗(x, t), x, t) = 2at

5
, i = 1, 2 (denoted EQCN ).14

14That is, any equilibrium in the unbounded region yields the solution found by Allaz and Vila (1993).
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(ii) EQCN exists, if and only if xi ≥ (1 − 2
√

2
5

)at =: at
c2.3

≈ at
2.3

, i = 1, 2.

Lemma 2 (One firm is constrained)

(i) If f ∗(x, t) ∈ FCi(x, t), then y∗i (f
∗(x, t), x, t) = xi and y∗−i(f

∗(x, t), x, t) = at−xi

2
(de-

noted EQCi).

(ii) EQCi exists if and only if xi <
at
2

and x−i ≥ at−xi

2
.

Lemma 3 (Both firms are constrained)

(i) If f ∗(x, t) ∈ FCB(x, t), then y∗i (f
∗(x, t), x, t) = xi, i = 1, 2 (denoted EQCB).

(ii) EQCB exists if and only if xi ≤ at−x−i

2
, i = 1, 2.

Figure 3: Subgame perfect equilibria of the parameterized subgames starting at stage two.

Lemmas 1 to 3 enable us to determine which of the four possible equilibria exist for

each given investment levels x. Note for example that for high investment levels (xi ≥ at
c2.3

,
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i = 1, 2), the unconstrained equilibrium exists (lemma 1). However, if investments of bidder

i are in that region but low enough ( at
c2.3

≤ xi ≤ at
2
), also EQCi exists (lemma 2). Thus, for

all xi ∈ [at
2
, at

c2.3
] both equilibria exist, provided x−i is high enough.

Figure 3 summarizes the results of lemmas 1 to 3. The figure shows (given a particular

demand realization t) for each possible combination of investment levels, which of the four

possible types of equilibria exist.

In order to analyze all subgame perfect equilibria of the game it is necessary to determine

the profit functions for all different choices of equilibria at stages two and three. This,

however, seems to be impossible since, in regions with multiple equilibria, for each t another

equilibrium of the subgame starting at stage two can be chosen. Moreover, the selection

of equilibria of the continuation game may depend on the history of the game, that is, on

x. Note that the motivation of our analysis is to show that the consideration of investment

incentives puts into question the desirability of forward markets. Thus, for our purpose

it is sufficient to make our point for a reasonable class of equilibria. We consider the

following subclass of equilibria which contains all equilibria of the game where the choice

of equilibrium at stages two and three does not depend on choices of x or t.

Definition 1 (σ-subgame perfect equilibrium, SPE(σ)) A σ-sub-game perfect

equilibrium is a subgame perfect equilibrium of the three stage game where in every small

interval [t, t+ δ], δ → 0, the equilibrium preferred by firm i has share σ and the equilibrium

preferred by firm −i has share 1 − σ.

As we mentioned in section 2, we do not need the assumption that firms decide on y(t)

prior to t = 0. We can also allow for the choice of production schedules prior to a finite

number of time intervals. Note that the spot market equilibrium y∗(x, f, t) is unique for all t

and thus, is the only equilibrium play satisfying subgame perfection if production schedules

are chosen repeatedly (but forwards for all t are chosen prior to t = 0). In general this

does not hold true for the choice of forward quantities. Here multiplicity of equilibria leaves

scope for credible threats that may support outcomes other than f ∗, y∗ for some t ∈ [0, T ].

However, the σ-subgame perfect equilibria we consider do not allow for conditioning on past

equilibrium outcomes. Thus, all equilibria covered by this concept are also equilibria of the

game where forwards are chosen repeatedly prior to a finite number of time intervals.15

15Finally note that conditioning on past outcomes does not make sense in the present model since demand

realizations are ordered. Thus, the evolution of the game over time is meaningless. The model would have

to be substantially modified in order to analyze those issues.
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4.2 Equilibrium Investments

Stage I Now that we have determined the equilibria of the subgames starting at stage two

for all possible capacities, we can turn towards solving the subgame perfect equilibria of the

market game with forward contracts. Figure 3 depicts the areas of existence of the different

types of equilibria for a given value of t. A firm’s profit from given levels of investments,

x, is the integral over equilibrium profits at each t given x on the domain [0, T ].

Note that (as in the case without forwards) any x > 0 gives rise to the unconstrained

equilibrium if t is close enough to zero. An increase of t corresponds to a dilation of all

regions outwards with center zero. Observe furthermore that in the three slices L, M , and

R (see figure 3), different types of equilibria exist and that also their sequence is different.

Thus, the exact form of the profit function depends on the location of the investment levels

x.

Suppose for example that we want to determine bidder i’s profit πi(x, f
∗, y∗) from a given

pair of investment levels x, where xi > 2x−i. That is, we have to integrate parameterized

equilibrium profits of the subgames starting at stage two from t = 0 to t = T given that

x is located in region L (see figure 3). In case both firms are constrained at the highest

demand realization, the profit function looks as follows:

π
L

i (x, f∗, y∗, d) =

∫

2x
−i

a

0

πCN (x, f∗, y∗, t)dt+ σ

∫

c2.3x
−i

a

2x
−i

a

πCN (x, f∗, y∗, t)dt (13)

+ (1 − σ)

∫

c2.3x
−i

a

2x
−i

a

πC−i(x, f∗, y∗, t)dt+

∫

2xi+x
−i

a

c2.3x
−i

a

πC−i(x, f∗, y∗, t)dt

+

∫ T

2xi+x
−i

a

πCB(x, f∗, y∗, t)dt− kxi.

Starting from t = 0, any x > 0 lies in the region where only EQCN exists. Thus, the

relevant profit for low values of t is πCN(x, f ∗, y∗, t) as given by equation (8). That region

is left when x−i = at
2

(see figure 3), or equivalently, t = 2x−i

a
. This explains the upper limit

of the first integral.

As t becomes larger than 2x−i

a
we enter into a region where multiple equilibria (of type

EQCN and EQC−i) exist. Obviously, different selections of equilibria of the continuation

games played at each t in such a region yield different equilibrium capacity choices at stage

one. The parameter σ determines which of the equilibria of the subgame starting at stage

two is selected at the operating stages. Firm i prefers EQCN and thus, receives share σ of

the corresponding profit πCN
i . The other firm prefers EQC−i which is why firm i receives

share 1 − σ of the corresponding profit πC−i
i .

14



As t increases beyond c2.3x−i

a
, first only EQC−i exists and finally, for high values of t,

both firms are constrained, i. e. they play EQCB. This explains the fourth and fifth integral

of equation (13).16

Note that in the remaining regions, M and R the profit function looks different since the

sequence of the areas of existence of the different types of equilibria is different (see figure 3).

In appendix C we derive the profit functions for all three regions. We obtain a parameterized

profit function πi(x, f
∗, y∗, σ) that is continuous at all x, but not everywhere differentiable.

From this profit function we derive a continuous but not everywhere differentiable upper

bound for firm i’s best reply function x̄BR
i (x−i, f

∗, y∗, σ).

Figure 4: The upper bound of firm i’s best reply function, xBR
i (x−i, f

∗, y∗, σ), and the

isoinvestment line INF .

16Capacity choices in region L (see figure 4) lead to a situation where both firms are constrained at the

highest demand realization. This is the case described here. For investment levels in region L, x is never

inside the region CB, such that the last integral (or the two or four last integrals) have to be dropped. See

also footnote 10.

15



Now we can compare investment levels in the two market games (with and without

forward trading) by comparing x̄BR
i (x−i, f

∗, y∗, σ) with the isoinvestment line INF in the

market without forward contracts defined by equation (4). If the best reply function lies

below the isoinvestment line for all xi ≥ x−i, no equilibrium of the game with forward

contracts can yield higher total investment than the game without forward contracts. The

result is summarized in the following

Lemma 4 The best reply function of firm i at stage one, xBR
i (x−i, f

∗, y∗, σ), yields

xBR
i (x−i) + x−i < xj + x−j for all (xj , x−j) ∈ INF whenever xBR

i (x−i, f
∗, y∗, σ) ≥ x−i.

For a detailed proof see appendix C.

Figure 4 illustrates the lemma. It depicts the isoinvestment line INF in the case without

forward markets, as well as (in the region above the 45-degree line) the upper bound of firm

i’s best reply in the presence of forward markets, x̄BR
i (x−i, f

∗, y∗, σ). As the latter always

lies below the isoinvestment line in absence of forward trading, we can conclude:

Theorem 1 Every SPE(σ) of the market game with forward contracts gives rise to strictly

less total investment than the unique equilibrium of the game without forward contracts.

5 Concluding Remarks

In this paper we analyzed a market game where firms choose capacities prior to a sequence

of Cournot markets. We compared the game with and without the possibility to trade on

forward markets prior to the production stages. We have shown that in all equilibria where

in case of multiplicity the equilibrium preferred by one firm is picked at any constant rate,

investment is lower in the presence of forward markets.

The result puts into question the welfare enhancing effect of strategic devices such as

forward contracts (as analyzed by Allaz and Vila, (1993)), the firms’ access to retailers, or

delegation of decisions to managers (as analyzed by Fershtman and Judd (1987) and Vickers

(1985)) prior to imperfectly competitive markets. On the one hand, in the presence of

strategic devices production will be higher and prices will be lower in low demand scenarios

where firms are unconstrained. In high demand scenarios, however, production is lower (and

prices are higher) if firms have access to strategic devices since in this case they choose lower

capacities. Moreover, the presence of strategic devices gives rise to a considerable strategic

uncertainty due to multiple equilibria (compared to a unique equilibrium of the game where

16



firms cannot precommit to sell a certain quantity prior to spot market interaction). An

explicit welfare comparison is beyond the scope of this paper and would be complicated by

the multiplicity of equilibria of the market game with forward contracts.

If applied to electricity markets, the result moreover touches the issue of supply secu-

rity, which requires considerable spare capacities. Currently in those markets the common

perception is that investment incentives are too low.17 Our results point out that forward

markets, even if it would turn out that they are beneficial when it comes to mitigate mar-

ket power, might be undesirable, since they further decrease the already low investment

incentives.
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A Proof of Proposition 1.

In section 3 we have already analyzed the last stage of the game, where firms decide on

production levels. At the first stage, firms choose capacities, anticipating optimal produc-

tion decisions at the second stage. In the following we first derive the firms’ best response

functions at stage one (part I), Then (part II) we solve the equilibrium of the game and

show uniqueness.

Part I First we determine the best response function of firm i.

(a) Region U = {x ∈ R
2
+ : xi ≥ x−i and xi ≤ aT−x−i

2
}: In this region firm i has the

higher capacity and both firms are capacity constrained at the highest possible demand

realization. The first order condition of firm i’s maximization problem (see equation (2) for

firm i’s profit function π
U
i ) is satisfied at

xmax,min
i (x−i) =

aT − x−i ∓
√

2ak

2
,

where xmax
i (x−i) = aT−x−i−

√
2ak

2
is the local maximum and xmin

i the local minimum.

As firm i increases its quantity, the upper bound aT−x−i

2
of U is reached before the profit

function attains its local minimum at xmin
i . Since the (cubic) function πh

i increases towards

∞ only for values of xi above this local minimum, we obtain that π
U
i attains its maximum

in region U at

xU
i (x−i) =

aT − x−i −
√

2ak

2
(14)
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for 0 ≤ x−i ≤ x
U−out
−i , where x

U−out
−i = aT−

√
2ak

3
is the value of x−i where x

U
i (x−i) hits the

righthandside border of region U (given by xi = x−i, see figure 2).

Region D = {x ∈ R
2
+ : xi ≤ x−i and xi ≤ aT − 2x−i}. In this region firm i has the higher

capacity and both firms are constrained at the highest demand realization, i. e. x−i ≤ aT−xi

2
.

Firm i’s profit function in this case is given by equation (3). By the same reasoning as above

we obtain for the maximum of πD in region D

xD
i (x−i) = max

{

0,
2aT − 2x−i −

√

6ak + a2T 2 − 2aTx−i − 2x2
−i

3

}

(15)

for xD−in
−i ≤ x−i ≤ xD−out

−i , where xD−in
−i = aT−

√
2ak

3
and xD−out

−i = min{aT
2
, aT+

√
12ak+a2T 2

6
}.

Again, x
D−in
i (x

D−out
i ) is the value of x−i where x

D
i (x−i) hits the lefthandside (righthandside)

border of region D given by xi = x−i and x−i = aT−xi

2
, respectively (see figure 2).

Region D
I

= {x ∈ R
2
+ : xi ≥ aT − 2x−i and xi ≤ aT

3
}: We finally consider the case that

firm i has the higher capacity and firm −i always has excess capacity even at the highest

demand realization, whereas firm i is constrained at least in the highest demand scenario .

In this region, the profit of firm i is given by equation (3), however, EQCB cannot occur

in this case. Since in region D
I

it holds that 2x−i+xi

a
> T , we have to drop the last integral

and substitute the upper limit of the second integral by T . We obtain

πD
I

i (x, y∗) =

∫

3xi

a

0

(

at

3

)2

dt+

∫ T

3xi

a

(

at− xi

2

)

xi dt− kxi

=
xi(a

2T 2 + x2
i − 2a(2k + Txi))

4a
+
xi x

2
−i

a
− kxi.

The function πD
I

i attains its maximum18 at

xD
I

i (x−i) = max{0, 2aT −
√

12ak + a2T 2

3
} (16)

for xD
I−in

−i ≤ x−i, where xD
I−in

−i = min{aT
2
, aT+

√
12ak+a2T 2

6
} is the intersection point of

xD
I

i (x−i) and the lefthandside border of region D
I
.

Remark 1 For k ≥ aT 2

4
it is always optimal for both firms to choose capacities such that

at the highest demand realization T we obtain a spot market equilibrium where both firms

are constrained. On the contrary for k ≤ aT 2

4
, whenever x−i is big enough, no matter how

18Again the the first order condition is satisfied at the local maximum and the local minumum. Since we

reach the upper bound of region D
I

however before the local minimum is reached the solution to the first

order condition gives the global maximum in region D
I
.
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big the capacity installed by firm −i is, it is always optimal to build up the constant amount

0 < xD
I

i < aT
3

.

(b) It is important to notice that the equations (14), (15) and (16) form a continuous line.

Also recall that the overall profit function is continuous. Thus, the continuous function

given by equations (14), (15), and (16) determines the profit maximizing capacity choices

over all three regions

U ∪D ∪DI
:=

{

x ∈ R
2
+ :

xi ≤ aT−x−i

2
for 0 ≤ x−i ≤ aT

3

xi ≤ aT
3

for x−i ≥ aT
3

}

(17)

(c) It remains to show that deviations outside the region U ∪D ∪DI
are not profitable for

firm i, i. e. that equations (14), (15), and (16) determine the locus of arg maxxi≥0 πi(xi, x−i).

We have to distinguish three different cases:

(I) Region U
I

= {x ∈ R
2
+ : x−i ≤ aT

3
and xi >

aT−x−i

2
}: The profit of firm i is given by

equation (2), dropping its last integral,

πU
I

i (x, y∗) =

∫

3x
−i

a

0

(

at

3

)2

dt+

∫ T

3x
−i

a

(

at− x−i

2

)2

dt− kxi (18)

πU
I

i (x, y∗) is a linear function in xi and attains its maximum at the lowest possible

value, making a deviation into this region undesirable.

(II) Region U
II

= {x ∈ R
2
+ : x−i ≥ aT

3
and xi > x−i}: The profit of firm i is given by

equation (2), dropping its last two integrals. This profit depends on xi only through

the term −kxi. Thus, it attains its maximum at the lowest possible value of xi,

making a deviation into this region undesirable.

(III) Region D
II

= {x ∈ R
2
+ : xi ≥ aT

3
and xi < x−i}: The profit of firm i is given by

equation (3), dropping its last two integrals. The profit depends on xi only through

the term −kxi. Thus, the function attains its maximum at the lowest possible value

of xi, making a deviation into this region undesirable.

Summing up, the best response function of firm i is given by

xBR
i (x−i) =















xU
i (x−i) for 0 ≤ x−i ≤ aT−

√
2ak

3

x
D
i (x−i) for aT−

√
2ak

3
≤ x−i ≤ min{aT

2
, aT+

√
12ak+a2T 2

6
}

xD
I

i (x−i) for min{aT
2
, aT+

√
12ak+a2T 2

6
} ≤ x−i

(19)
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for the parameter values a > 0, T > 0, and k ∈ [0, aT 2

2
].19

Part II Now we can determine all equilibria (x∗i , x
∗
−i) of the market game without forward

contracts. We assume without loss of generality that xi ≥ x−i. (x∗i , x
∗
−i) is an equilibrium

if and only if (x∗i , x
∗
−i) is a fixed point of the best reply correspondence, i. e. it satisfies the

following two equations:

xi =
aT − x−i −

√
2ak

2
⇔ x−i = aT − 2xi −

√
2ak =: g(xi), (20)

x−i = max

{

0,
2aT − 2xi −

√

6ak + a2T 2 − 2aTxi − 2x2
i

3

}

=: h(xi). (21)

At xi = x−i = aT−
√

2ak
3

both equations are satisfied and thus, we have a symmetric

equilibrium. For xi > x−i however, g(xi) decreases with slope −2, whereas h(xi) changes

at the smaller rate

dh

dxi

= −2

3
+

aT + 2xi

3
√

6ak + a2T 2 − 2aTxi − 2x2
i

(

> − 2

3
∀ a, T, k

)

,

for all xi such that h(xi) > 0 and remains constant otherwise. Thus, for xi > x−i no further

equilibrium exists. We conclude that

xi =
aT −

√
2ak

3
, i = 1, 2

is the unique subgame-perfect equilibrium of the market game without forward contracts.

The result is illustrated in figure 2.

B Proofs of lemmas 1 to 3

B.1 Proof of Lemma 1:

Part I We first show that any equilibrium EQCN , if it exists, is given by f ∗
i (·) =

1
5
at, y∗i (·) = 2

5
at, i = 1, 2.

Suppose that (f̆ ∗, y̆∗) is an equilibrium and that f̆ ∗ ∈ FCN(x, t). Thus, we know from

section 4.1 that at the third stage we have the unique solution y̆∗i (x, f̆
∗, t) =

at+2f̆∗

i
−f̆∗

−i

3
,

19Investment in the market is profitable only if k < aT 2

2 . At higher cost it would not even be profitable

to invest for a monopolist (x−i = 0).

21



i = 1, 2. Since FCN(x, t) is an open set, f̆ ∗
i is a maximizer of πi(x, fi, f̆

∗
−i, y̆

∗, t) in some

neighborhood of f̆ ∗
i .

Since the profit function of the game without capacity constraints π∞
i (f, y̆∗, t) = πi(xi =

∞, x−i = ∞, f, y̆∗, t) is concave in fi (compare equation (8) and Allaz and Vila (1993)), f̆ ∗
i

is also the global maximizer for all fi ≥ 0. Consequently, (f̆ ∗, y̆∗) is the unique equilibrium

of the unrestricted game, which according to Allaz and Vila (1993) has the unique solution

(f ∗
i = 1

5
at, y∗i = 2

5
at).

Part II Conditions for existence of the equilibrium f ∗
i (·) = 1

5
at, y∗i (·) = 2

5
at, i = 1, 2:

(a) First note that (f ∗
i , f

∗
−i) = (1

5
at, 1

5
at) ∈ FNC(x, t) if and only if xi >

2
5
at, i = 1, 2.

(b) However, depending on the capacity choices at stage one, fi = 1
5
at might not be the

profit maximizing choice of firm i given that firm −i chooses f−i = 1
5
at. Recall that for

fi = 1
5
at, i = 1, 2, none of the firms is constrained at the production stage. Now observe

that, given that firm −i chooses f−i = 1
5
at, by varying the number of forward contracts

traded, firm i can provoke a situation where either of the two firms is constrained. The

corresponding profits and forward contracts traded are as follows:

πi(fi, f
∗
−i, ·) =















πC−i
i (·) =

(at−x−i)
2−f2

i

4 for 0≤ fi ≤ 7
5at− 3x−i (FC−i)

πCN
i (·) =

( 4
5
at−fi)(

4
5
at+2fi)

9 for 7
5at− 3x−i≤ fi ≤ 3

2xi − 2
5at (FCN )

πCi
i (·) =

xi(
4
5
at−xi)

2 for 3
2xi − 2

5at≤ fi ≤xi (FCi)

Note that the above profits correspond to the profits that have been derived in section

4.1 for the cases CN (no firm is constrained) and Ci, C − i (firm i/−i is constrained).

Furthermore note that if condition (a), xi ≥ 2
5
at, i = 1, 2, is satisfied, the region where

none of the firms is constrained cannot disappear. That is, given that firm −i chooses

f−i = 1
5
at, firm i can always sell forwards such that both firms are unconstrained at stage

three.

Now observe that the unconstrained equilibrium quantities at stage three,

y∗i (x, fi, f
∗
−i, t) =

at+2fi−f∗

−i

3
, i = 1, 2, imply that if firm i trades less forwards, its quantity

sold at stage three decreases, whereas the quantity sold by firm −i increases. Thus, if firm

−i’s capacity is sufficiently low, a low quantity of forwards traded by firm i can provoke a

situation where firm −i is capacity constrained at stage three. This happens if firm −i’s ca-

pacity x−i is lower than its unconstrained equilibrium quantity ỹ∗−i(x, fi, f
∗
−i, t) =

at+2f∗

−i
−fi

3

(see equation (9)). Solving for the corresponding value of fi yields fi ≤ 7
5
at− 3x−i. Thus,

for fi ∈ [0, 7
5
at − 3x−i], (fi, f

∗
−i) ∈ FC−i(x, t). Obviously, firm i can only provoke this

situation if x−i is low enough, i. e. x−i ∈ [2
5
at, 7

15
at].

22



A similar reasoning explains the case that (fi, f
∗
−i) ∈ FCi(x, t). Obviously, this case can

only occur if firm i’s capacity is low enough, i. e. xi ≤ 4
5
at.

It is easy to check that the above profit function πi is continuous. Thus, since πCi
i is

a constant, deviation upwards, fi > f ∗
i , is never profitable. Furthermore, πi has two local

maxima, one at f ∗
i = 1

5
at and another one at f 0

i = 0. Obviously f ∗ is an equilibrium if and

only if f ∗
i is the global maximum of πi(fi, f

∗
−i) which is the case iff

πCN
i (f ∗

i , f
∗
−i) =

2

25
(at)2 ≥ 1

4
(at− x−i)

2 = πC−i
i (f 0

i , f
∗
−i)

⇔ x−i ≥ at(1 − 2

5

√
2) =:

at

c2.3

(

≈ at

2.3

)

We conclude that (f ∗
i (·) = 1

5
at, y∗i (·) = 2

5
at), i = 1, 2, is a SPE of the parameterized

subgames starting at stage two if and only if xi ≥ at
c2.3

, i = 1, 2.

B.2 Proof of Lemma 2:

Part I If there exists an equilibrium (f ∗, y∗) such that f ∗ ∈ FCi(x, t), then by construction

it holds that y∗i = xi. The profit of firm −i in this case is given by20

πCi
−i(xi, f−i, y

∗, t) =
(at− xi)

2 − f 2
−i

4
,

which is maximized at f ∗
−i = 0. Thus, in any equilibrium EQCi it holds that f ∗

−i = 0, which

implies that firm −i’s equilibrium output at stage three is given by y∗−i(f
∗
−i) = at−xi

2
. This

proves part (i) of the lemma.

Part II Let f ∗
i = xi, f

∗
−i = 0, and f ′

i ∈ [0, xi). We now show that if (f ′
i , f

∗
−i, y

∗),

(f ′
i , f

∗
−i) ∈ FCi(x, t), is an equilibrium EQCi, then also (f ∗, y∗), f ∗ ∈ FCi(x, t), is an

equilibrium EQCi.

We have already shown in part I that, given firm i produces at capacity, firm −i always

chooses f ∗
−i = 0.

Now consider deviations of firm i. Since (f ′
i , f

∗
−i, y

∗) is an equilibrium, deviations fi 6= f ′
i

cannot be profitable. In particular, deviations fi ∈ (f ′
i , xi] leave firm i’s payoff unchanged,

since increasing the quantity contracted forward leaves firm i constrained at stage three.

This implies that whenever (f ′
i , f

∗
−i, y

∗), (f ′
i , f

∗
−i) ∈ FCi(x, t), is an equilibrium EQCi,

then so is (f ∗
i , f

∗
−i, y

∗).

20see equation 11.
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Part III The findings of part I and II imply that whenever at least one equilibrium EQCi

of the parameterized subgames starting at stage two exists, (f ∗
i , f

∗
−i, y

∗) = (xi, 0, y
∗) is an

equilibrium EQCi (part II) and that all such equilibria give rise to the same quantities at

the production stage (part I). We now establish necessary and sufficient conditions for the

existence of at least one equilibrium EQCi.

(a) First, we check whether (f ∗
i , f

∗
−i) = (xi, 0) ∈ FCi(x, t). In order to do so, we substitute

(f ∗
i , f

∗
−i) = (xi, 0) into the inequalities (9). As it turns out, f ∗ ∈ FCi(x, t) whenever

it holds that

xi ≤ at and x−i ≥
at− xi

2
.

In order to establish that (f ∗, y∗) is indeed an equilibrium it remains to show that

none of the firms wants to deviate from its quantity of forwards sold given the other

firm’s choice.

(b) Let us first consider deviations of firm −i. Since f ∗
−i = 0, only deviation upwards

is possible. Note that since fi = xi firm i is committed to sell its whole capacity at

stage three (yi = xi) and as we have already shown in part I, the best firm −i can do

is to stick to f ∗
−i = 0.

(c) Now we consider deviations of firm i. Since f ∗
i = xi, only deviation downwards is

possible, which can lead to (fi, f
∗
−i) ∈ FCN .21 Given that f ∗

−i = 0, firm i’s profit

function is

πi(fi, f
∗
−i, ·) =

{

πCi
i (·) = xi(at−xi)

2 for 3xi−at
2 ≤ fi ≤xi (FCi)

πCN
i (·) = (at−fi)(at+2fi)

9 for 0≤ fi ≤ 3xi−at
2 (FCN )

It is easy to check that πi is continuous at fi = 3xi−at
2

. Furthermore note that

πCi
i (fi, f

∗
−i) is a constant and πCN

i (fi, f
∗
−i) is a quadratic function reaching its maxi-

mum at fi = at
4
. This implies that a deviation of firm i such that (fi, 0) ∈ FCN(x, t)

is profitable if and only if

at

4
≤ 3xi − at

2
⇔ xi ≥

at

2
.

Summing up, we obtain that (f ∗; y∗i , y
∗
−i) = (f ∗; xi,

at−xi

2
), i = 1, 2, is a SPE of the param-

eterized subgames starting at stage two if and only if x−i ≥ at−xi

2
[from (a)] and xi <

at
2

[from (c)].

21Note that for x1 ≤ 1
3at (which is the unconstrained Cournot quantity) deviation into FCN is impossible.
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B.3 Proof of Lemma 3:

Part (i) is satisfied by construction since f ∗ ∈ FCB(x, t). In order to prove part (ii), take

any f̆i > 0, f̆−i > 0 such that (f̆i, f̆−i) ∈ FCB(x, t).

Given f̆−i, firm i’s profit function πi(fi, f̆−i, ·) is22

πi(fi, f̆−i, ·) =

{

πC−i
i (·) =

(at−x−i)
2−f2

i

4 for 0 ≤ fi ≤ 2xi + x−i − at (FC−i)

πCB
i (·) = (at− xi − x−i)xi for 2xi + x−i − at ≤ fi ≤ xi (FCB)

Notice that πi is continuous at fi = 2xi + x−i − at and that πCB
i is constant in fi. It

is easy to see that deviation to fi = 0 is always profitable for firm i whenever it leads

to (fi = 0, f̆−i) ∈ FC−i. Such a deviation is impossible however if 2xi + x−i − at ≤ 0.

Accordingly (f̆i, f̆−i) is an equilibrium if and only if

2xi + x−i − at ≤ 0 ⇔ xi ≤
at− x−i

2
, i = 1, 2.

C Proof lemma 4

The proof proceeds as follows. In part I we consider the set of investment levels where

xi ≥ x−i and both firms are constrained at the highest demand realization. Within this set

we derive the investment level xi of firm i that maximizes firm i’s profit given an investment

level x−i of firm −i. In part II we show that the function derived in part I is an upper bound

for the best response of firm i to a given investment level of firm −i. Finally, in part III

we show that the upper bound of firm i’s best response always lies below the isoinvestment

line (equation(4)) that contains all investment levels that yield the same total capacity

as the market game in absence forward markets. Throughout the proof we consider only

investment levels such that xi ≥ x−i, since this is sufficient to prove the lemma.

Part I As a first step, we consider the region where firm i’s investment is higher than firm

−i’s and both firms are constrained at the highest demand realization, that is xi(x−i) ∈
U = {x ∈ R

2
+ : xi ≥ x−i and xi ≤ aT−x−i

2
}. Within this region, we derive the investment

level xi of firm i that maximizes firm i’s profit given an investment level x−i of firm −i. We

have to proceed in three steps, since firm i’s profit function looks differently in the three

subregions L, M , and R (see figure 3).

22Notice if firm i reduces fi such that (fi, f̆−i) exits FCB, then for all values of fi firm −i will remain

constrained, since firm −i has even stronger incentives to increase it’s output at stage three.
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Region L = {x ∈ R
2
+ : xi ≥ 2x−i and xi ≤ aT−x−i

2
}: Firm i’s profit function

πL
i (x, f ∗, y∗, σ) is given by equation (13). Note that differentiation of πL

i (·) leads to the

same first order condition as differentiation of πU
i (equation (2)) in the case without for-

ward contracts (see appendix A). This is because all terms depending on xi coincide for

the two profit functions. Thus, πL
i (·) attains its maximum at

xL
i (x−i) =

aT − x−i −
√

2ak

2
(22)

for 0 ≤ x−i ≤ x
L−out
−i , where x

L−out
−i = 1

5
(aT −

√
2ak) is the value of x−i where x

L
i (x−i)

intersects with the righthandside border of region L, given by xi = 2x−i.

For values xi > x
L
i (x−i), π

L
i is decreasing in xi since the local minimum is located above

the upper bound of region L given by xi = aT−x−i

2
. Thus, for x−i > xL−out

−i , the maximizer

x
L
i in region L is given by its lower bound x

L
i (x−i) = 2x−i.

Region M = {x ∈ R
2
+ : 2x−i ≥ xi ≥ c2.3

2
x−i and xi ≤ aT−x−i

2
}: The profit of firm i in

region M is given by23

π
M

i (x, f∗, y∗, σ) =

∫

2x
−i

a

0

πCN (·)dt+ σ

∫

c2.3x
−i

a

2x
−i

a

πCN (·)dt+ (1 − σ)

∫

c2.3x
−i

a

2x
−i

a

πC−i(·)dt

+

∫

2xi

a

c2.3x
−i

a

πC−i(·)dt + σ

∫

xi+2x
−i

a

2xi

a

πCi(·)dt+ (1 − σ)

∫

xi+2x
−i

a

2xi

a

πC−i(·)dt

+

∫

2xi+x
−i

a

xi+2x
−i

a

πC−i(·)dt+

∫ T

2xi+x
−i

a

πCB(·)dt − kxi;

The first order condition of firm i’s maximization problem is satisfied at

x
Mmax

i (x−i) =
1

2 + σ

(

aT −
√

φ(x−i, σ, k) −
(

1 − 5σ

4

)

x−i

)

,

x
Mmin

i (x−i) =
1

2 + σ

(

aT +
√

φ(x−i, σ, k) −
(

1 − 5σ

4

)

x−i

)

,

where φ(x−i, σ, k) = 2ak + 1
2
σ

(

2ak − a2T 2 + 7aTx−i −
(

11 − 5σ
8

)

x2
−i

)

.

Starting at xi = 0, for a given x−i, π
M
i increases until x

Mmax
i (x−i), then decreases until

xMmin
i (x−i), and from there on increases to infinity. Thus, xMmax

i is the maximizer of πM
i

in region M , whenever x
Mmax
i ∈ M , whereas x

Mmin
i lies outside that region (in this case,

πM
i is quasiconcave in region M).

We now show that π
M
i is quasiconcave in xi in region M for all σ ∈ [0, 1] and all k.24

This is the case if xMmin
i (x−i) is above region M for all x−i. In order to verify this, notice

23The profit in region M is derived analogously to the profit in region L, see equation (13).
24Recall that at cost k > aT 2

2 even a potential monopolist would not enter the market.
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that xMmin
i (x−i) crosses the lefthandside border of region M given by xi = 2x−i at

xminM−in
−i =

aT +
√

2ak − aσ
50

(aT 2 − 2k)

5 + σ
10

(

≥ aT

5
∀ k, σ

)

.

This is above the upper bound of region M given by xi = aT−x−i

2
, which intersects the line

xi = 2x−i at x−i = aT
5

. Since xMmin
i increases in x−i and since the upper bound of region

M, xi = aT−x−i

2
, decreases in x−i, we obtain that xMmin

i is always above region M. Thus

the maximum of πM
i in region M is given by

x
M

i (x−i) =
1

2 + σ

(

aT −
√

φ(x−i, σ, k) −
(

1 − 5σ

4

)

x−i

)

(23)

for xM−in
−i ≤ x−i ≤ xM−out

−i , where

x
M−in

−i =
aT −

√

2ak − aσ
50 (aT 2 − 2k)

5 + σ
10

,

x
M−out

−i =
aT −

√

2ak + 0.056aσ(aT 2 − 2k)

(1 + c2.3) − 0.18σ
,

are the values of x−i where xM
i intersects with the lefthandside and righthandside border

of region M given by xi = 2x−i and xi = c2.3

2
x−i, respectively.

Notice that (22) and (23) do not form a continuous line, since xL−out
−i < xM−in

−i . Since

πM
i is quasiconcave in region M , the values of xi that maximize πM

i for x−i < xM−in
−i are

given by the lefthandside border of region M .

Region R = {x ∈ R
2
+ : c2.3

2
x−i ≥ xi ≥ x−i and xi ≤ aT−x−i

2
}: The profit of firm i in region

R is given by

π
R

i (x, f∗, y∗, σ) =

∫

2x
−i

a

0

πCN (·)dt+ σ

∫

2xi

a

2x
−i

a

πCN (·)dt+ (1 − σ)

∫

2xi

a

2x
−i

a

πC−i(·)dt

+σ

∫

xi+2x
−i

a

2xi

a

πCi(·)dt + (1 − σ)

∫

xi+2x
−i

a

2xi

a

πC−i(·)dt

+

∫

2xi+x
−i

a

xi+2x
−i

a

πC−i(·)dt+

∫ T

2xi+x
−i

a

πCB(·)dt − kxi.

The first order condition of firm i’s maximization problem is satisfied at

x
Rmax

i (x−i) =
1

2 − 9
25σ

(

aT −
√

ψ(x−i, σ, k) −
(

1 − σ

4

)

x−i

)

x
Rmin

i (x−i) =
1

2 − 9
25σ

(

aT +
√

ψ(x−i, σ, k) −
(

1 − σ

4

)

x−i

)

,

where ψ(x−i, σ, k) = 2ak + σ
50

(−18ak + 9a2T 2 + 7aTx1 − (91 − 133σ
8

)x2
1).
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Similar to the analysis of region L, we can show that we always reach the upper bound

of region R, xi = aT−x−i

2
, before the local minimum xRmin

i of πR
i is reached.25

Thus, in region R, πR
i attains its maximum at

x
R

i (x−i) =
1

2 − 9
25σ

(

aT −
√

ψ(x−i, σ, k) −
(

1 − σ

4

)

x1

)

(24)

for x
R−in
−i ≤ x−i ≤ x

R−out
−i , where

xR−in
−i =

aT −
√

2ak + 0.056aσ(aT 2 − 2k)

(c2.3 + 1) − 0.18σ
,

xR−out
−i =

aT −
√

2ak + 11
450
aσ(aT 2 − 2ak)

3 − 11
150
σ

are the values of x−i where xR
i intersects with the lefthandside and righthandside border of

region R given by c2.3x−i

2
and xi = x−i, respectively. Notice that x

M−out
−i = x

R−in
−i .

Summing up we can now state the maximizer over all three regions. Since πi is

continuous at all x, we obtain that the maximizer x
L∪M∪R
i (x−i) of πi in the Region

L ∪M ∪ R = {x ∈ R
2
+ : xi ≥ x−i and xi ≤ (aT−x−i)

2
} is given by

xL∪M∪R
i (x−i) =























xL
i (x−i) for 0 ≤ x−i ≤ xL−out

−i

2x−i for x
L−out
−i ≤ x−i ≤ x

M−in
−i

xM
i (x−i) for xM−in

−i ≤ x−i ≤ xR−in
−i

x
R
i (x−i) for x

R−in
−i ≤ x−i ≤ x

R−out
−i

(25)

Part II In order to establish that xL∪M∪R
i (x−i) is an upper bound for the best reply

function of firm i it remains to show that deviations outside the region L ∪M ∪R are not

profitable.

a) We first analyze deviation upwards, i. e. xi ≥ aT−x−i

2
.

For xi ≥ 2x−i the profit function is given by (13), adjusting, however, the limits of integra-

tion. Analogously to appendix A, part I(c), we have to drop the last integral if xi ≥ aT−xi

2

and x−i ≤ aT
c2.3

, drop the last two integrals if aT
c2.3

≤ x−i ≤ aT
2

, and drop the last four integrals

25This can be checked for by evaluating the following inequality for all k, σ:
aT+

√
2ak+0.056aσ(aT 2−2k)

3.30−0.18σ
>

aT
c2.3+1 , where the LHS is the x′−i satisfying x

Mmin

i (x′−i) = 2x′−i and the RHS is the x′′−i satisfying
aT−2x′′

−i

2 =

2x′′−i. Furthermore x
Rmin

i (x−i) is increasing in x−i, whereas the upper limit of Region R is decreasing in

x−i.
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if aT
2

≤ x−i. That is, region L divides into three different regions in the case of forward

markets.

In all three cases the resulting profit of firm i depends on xi only through the linear

expression −kxi, which makes it optimal for firm i to choose the lowest possible value of xi

in each region. Thus, a deviation into the region where one of the firms is unconstrained

at the highest demand realization is undesirable.

b) Finally we consider a deviation downwards, i. e. xi ≤ x−i.

If deviation downwards for 0 ≤ x−i ≤ xR−out
−i should be profitable then the curve given

by (25) is an upper bound of firm i’s best reply function, which is sufficient to prove the

lemma.

Finally, for xR−out
−i < x−i it can be verified that it is never optimal for firm i to choose

xi = x−i . In region IV, which is given by {x ∈ R
2
+ : x−i ≥ xi ≥ 2

c2.3
x−i and x−i ≤ aT−xi

2
},

the derivative of πIV
i at xi = x−i is given by

dπIV

i

dxi

|xi=x−i
= 450−11d

100a
x2
−i − 3Tx−i + aT 2

2
− k,

which is negative for x−i ∈ [xR−out
i

, aT
3

].26 Similarly it can be verified that the same holds

true also for x−i >
aT
3

. Thus, we can conclude that for xR−out
i

< x−i it is never optimal for

firm i to choose xi = x−i.

Part III Now we can show that the best reply function of firm i, xBR
i , is always below

the isoinvestment line INF for all xi ≥ x−i

An upper bound for the best reply function of firm i is x̄BR
i = xL∪M∪R

i (x−i) as given by

(25). Furthermore, we have shown that for x−i > xRout
−i the best reply has to be below the

45-degree-line.

In order to show that the upper bound of firm i’s best reply, x̄BR
i (x−i, f

∗, y∗, d), given

by (25) lies below INF , we first show that the (continuous) function x̄BR
i (x−i, f

∗, y∗, d) is

convex in all differentiable parts.27 Thus, in order to compare x̄BR
i and INF it is sufficient

to compare the points of intersection of x̄BR
i and INF with the straight lines that separate

the three regions (see figure 4). We now show that at each intersection point with one of

the separating lines, the sum of investments on the best reply function in the presence of

forward contracts, x̄BR
i (x−i)+x−i is lower than the sum of investments on the isoinvestment

line.

The four separating lines that have to be checked are (1) x−i = 0, (2) xi = 2x−i, (3)

26Recall that aT
3 is the value of the upper bound of the region where both firms are constrained at the

highest demand realization given xi = x−i.

27We obtain
d(x

L

i
)2

d2x−i
= 0,

d(x
M

i
)2

d2x−i
> 0, and

d(x
R

i
)2

d2x−i
> 0.

29



xi = c2.3x−i

2
, and xi = x−i. At x−i = 0 it holds that x̄BR

i (0) = aT−
√

2ak
2

< aT−
√

2ak
3

, where the

last expression is the total investment in the market without forward contracts. Along the

remaining separating lines, we now compare the values of x−i where x̄BR
i intersects with

each of the three lines and the intersection points of INF with those lines. We get

(2) along xi = 2x−i: x
M−in
−i < 2

9
(aT −

√
2ak),

(3) along xi = c2.3/2x−i: xM−out
−i < 4

3(c2.3+2)
(aT −

√
2ak),

(4) along xi = x−i: x
R−out
−i < 1

3
(aT −

√
2ak),

where the last terms are the intersection points of the separating line and INF . It can

be shown28 that inequalities (2) to (4) above are always satisfied for the parameter space

k ∈ [0, aT 2

2
], σ ∈ [0, 1], a > 0, and T > 0, which proves the lemma.

28Notice that by differentiation it can be verified that x
M−in

−i , x
M−out

−i , and x
R−out

−i are monotone in σ.

Furthermore each inequality can be divided by aT (replacing k = aT 2k′). Then, inserting the maximizing

values of σ, verification of conditions (2) to (4) is reduced to a one variable problem.
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