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1 Introduction

In recent years price caps have been proposed (and also been used) in a variety of industries

as a mean to combat the exercise of market power.1 The classical literature on price

regulation2 provides the theoretical rationale: Consider a monopolist who faces a standard

downward sloping demand curve. Compared to the situation without price cap, any price

cap between the competitive and the profit maximizing price will increase his supply. By

setting the price cap equal to marginal cost, the regulator can actually implement the welfare

optimum. These results extend straightforwardly to the case of oligopolistic competition.

In practice, however, regulators typically do not know the firms’ costs and also the firms

face considerable uncertainty upon production, e. g. about future demand for their product.

While the first problem has been investigated intensively in the literature3, the issue of the

firms’ uncertainty about the future state of the world has not been paid much attention

to up to date.4 It is important to notice, however, that under demand uncertainty a low

price cap (at or close to marginal cost) is typically suboptimal and may often even lead to

a complete stoppage of production. The reason is that firms may face an expected price

lower than marginal cost under such a regulatory regime.

Still, the common perception of practitioners is that price caps are an effective policy

tool. Price caps indeed have been widely used, e.g. to discipline potential market power

at the spot markets in the context of deregulating electricity markets. Typically, however,

those price caps are well above marginal cost of the most costly operating unit in any

demand scenario.5 As we will show, relatively high price caps indeed increase production

and welfare as compared to the situation without price cap.

In our paper we consider a standard Cournot game where demand is uncertain and firms

choose their production quantities before the demand realization is known. The profit of

each firm depends on the quantity produced and the price of the good, which is a function

of total production in the industry and a parameter that captures demand uncertainty.

Each firm has constant marginal cost c.6 In the context of this model, we examine the

introduction of a price cap p̄ ≥ c.

1Price caps have first been proposed during the British Telecom privatization by Littlechild (1983), and
have also widely been used in the electricity industry, see e.g. Stoft (2002).

2The literature on price regulation is very well developed for the regulation of monopolies. For a
comprehensive overview see for example Laffont and Tirole (1993).

3See, e.g. Pint (1992), or Biglaiser and Riordan (2000).
4Cowan (2002) points out that price caps may negatively affect investment incentives in the presence of

uncertainty. Dixit (1991), Dobbs (2004), and Roques and Savva (2006) analyze the impact of price ceilings
in continuous time models with stochastic demand and indeed find that firms under–invest as compared to
the competitive equilibrium.

5See, for example, Borenstein (2002), who discusses the use of price caps in the Californian electricity
market.

6Our results can also be shown for convex cost. However, constant marginal cost allows a much clearer
exposition.
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We identify a range of high price caps that always lead to an increase of production

and welfare as compared to the situation without price cap for any distribution of uncer-

tainty. To gain some intuition, note that as compared to the situation without price cap, a

high price cap (above the highest possible marginal revenue without a price cap) increases

marginal revenue in any demand scenario where it is effective. Thus, it cannot introduce

a disincentive to produce by decreasing expected marginal revenue. However, while any

price cap in the range we identify yields higher production and welfare than no price cap,

it requires exact knowledge of the distribution to pin down the optimal price cap.

When it comes to low price caps our results are ambiguous. Low price caps may have

negative effects on production and welfare, and a price cap close to marginal cost may even

lead to a complete stoppage of production. Thus, typically the optimal price cap is bounded

away from marginal cost. However, optimality of a price cap arbitrarily close to marginal

cost is also possible under demand uncertainty. We conclude that the attractiveness of low

price caps depends on the exact distribution of uncertainty.

Note that firms which produce under demand uncertainty may have an incentive to

withhold some of their production in case demand turns out to be low, in order to affect

prices. This can be analyzed as a two stage game where firms first choose production under

demand uncertainty and then decide on sales once uncertainty unraveled. We show that

in this market game with free disposal all of the above conclusions (for the case without

free disposal) continue to hold.7 Moreover, we are able to pin down the lower bound of the

interval of welfare increasing (high) price caps to be the competitive price given the highest

demand realization. This is a valuable policy result, since in those markets where detailed

information on cost is available (as, for example, the electricity market) this price cap can

easily be calculated whereas almost nothing is known for the case of market power.

The paper is organized as follows: In section 2 we introduce the model. Section 3

contains our results. In section 3.1 we show existence, characterize the equilibrium, and

provide comparative statics results for low and high price caps. In 3.2 we show existence

and uniqueness of equilibrium in the free disposal case and show that qualitatively the same

conclusions can be drawn as in section 3.1. Section 3.3 characterizes the optimal price cap.

In a discussion (section 4) we finally illustrate our results with a numerical example. Section

5 concludes.

7This model, which we analyze in section 3.2, can also be interpreted as a game where firms first invest
in capacity under demand uncertainty and then produce after uncertainty unraveled. Our analysis then
shows that in this two stage game a high price cap would increase equilibrium investment and welfare as
compared to the situation without price cap.
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2 The Model

We consider a market game where n symmetric firms simultaneously produce a homogenous

good at constant marginal cost c.8 Market prices are subject to a price cap p̄. Denote by

q = (q1, . . . , qn) the vector of outputs of the n firms, and let Q =
∑n

i=1 qi be total quantity

produced in the market. Market demand is given by a function P (Q, θ), which depends

on total quantity and a random variable θ, which represents the (uncertain) ”demand sce-

nario”. Denote by [θ, θ] the range of possible demand scenarios and by F (θ) the probability

distribution of θ, with the corresponding density f(θ) > 0 for all θ ∈ [θ, θ]. We introduce

the parameter z ≤ 0 as a lower bound on market prices in order to take into account non-

negativity of prices (z = 0) or disposal cost (z < 0) and denote the quantity where this

lower bound is met by Q̄(θ).9 The following regularity assumptions on demand have to be

satisfied only for quantities Q < Q̄(θ):

Assumption 1 (i) P (Q, θ) is continuously differentiable10 in Q with11 Pq(Q, θ) < 0 and

limQ→∞ P (Q, θ) < c for all θ ∈ [θ, θ].

(ii) P (Q, θ) is differentiable in θ with Pθ(Q, θ) > 0 θ ∈ (θ, θ].

In our model, firms decide on production before the realization of θ is known. The

expected profit from operating in a market with price cap p̄ if production is q is given by

πi (q, p̄) =

θ∫
θ

min{p̄, P (Q, θ)}qi (θ) dF (θ)− cqi. (1)

Throughout the paper we consider only those cases where, in absence of a price cap,

production is gainful, i. e. E(P (0, θ)) > c. We are interested in pure strategy Nash equi-

libria of the game. For any fixed price cap p̄ we denote an equilibrium by q∗(p̄) and the

corresponding total equilibrium output by Q∗(p̄). Since a price cap below marginal cost c

leads to no production, we restrict ourselves to price caps p̄ > c.

3 Results

This section contains all our results. When we analyze welfare effects we will refer to total

welfare (W ) and consumer welfare (CW ), which is calculated under the assumption of

8The assumption that marginal cost is constant is made for easier exposition. All the results can be
shown to hold also for increasing marginal cost, however, with much higher technical effort.

9In case the lower bound is not binding we can set Q̄(θ) =∞.
10Differentiability is not crucial for our results but makes exposition easier.
11Throughout the paper we denote the derivative of a function g(x, y) with respect to an argument

z, z = x, y, by gz(x, y), the second derivative with respect to that argument by gzz(x, y), and the cross
derivative by gxy(x, y).
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efficient rationing of consumers.12

3.1 Equilibrium Analysis and Comparative Statics

In this section we characterize equilibrium production in the Cournot market game under

demand uncertainty. Moreover, we provide comparative statics results for low and high

price caps.

Theorem 1 (Equilibrium with Price Caps) For any price cap p̄ the Cournot market
game with uncertain demand has no asymmetric equilibria and at least one symmetric
equilibrium. In any equilibrium with positive production expected marginal revenue equals
marginal cost, i.e.13

Q∗ =

Q :

θp̄(q,p̄)∫
θQ(q)

[
P (Q, θ) + Pq (Q, θ)

Q

n

]
dF (θ) +

θ∫
θp̄(q,p̄)

p̄dF (θ) = c

 , (2)

where θQ ∈ [θ, θ] is the demand scenario from which on production is binding14 and θp̄ ∈
[θ, θ] is the demand scenario where the price cap is met.

Proof See appendix A. �

Before we provide some intuition, we make the following definitions that simplify the

discussion of our results.

Definition 1 Denote by ρ̄0 the highest price cap that yields zero production and by ρ̄∞ the
lowest non-binding price cap in the highest equilibrium (denoted Q∗h(p̄)), i.e.

ρ̄0 =

{
p̄ :
∫ θ̃p̄(0,p̄)

θ

P (0, θ)dF (θ) +
∫ θ

θ̃p̄(q,p̄)

p̄dF (θ) = c

}
, ρ̄∞ =

{
p̄ : p̄ = P (Q∗h(p̄), θ)

}
.

Denote by Q0 welfare optimal production in the lowest demand scenario θ, i.e.

Q0 = max{0, (Q : P (Q, θ) = c)}.

Price caps higher than ρ̄∞ are never binding in the highest equilibrium. In the corre-

sponding first order condition it holds that θp̄ (q, ρ̄∞) = θ, and the second term on the LHS

of (2) has to be dropped. The resulting first order condition has a straightforward intuition:

The LHS is expected marginal revenue, whereas the RHS is just marginal cost of produc-

tion. Note that on the LHS expectation is taken only over those demand scenarios where

the additional unit produced would actually generate nonzero marginal revenue (i. e. the

12I.e., W = Eθ
[∫ Q

0
P (x, θ)dx− cQ

]
and CW = Eθ

[∫ Q
0

(P (x, θ)−min{P (Q, θ), p̄})dx
]
.

13In the following we set z = 0, which means that prices are nonnegative. This is the most natural case.
In the appendix, a characterization is provided for general values of z.

14That is, θQ = {θ : P (Q, θ) = 0}. Note that here we have set z = 0 for easier exposition. For z low
enough it would always hold that θQ = θ.
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lower limit of integration is θQ(q), not θ). The reason is that only production of a unit that

generates a nonzero price is relevant for the firms’ production decisions.15

Now consider the case of a binding price cap and positive production. The corresponding

first order condition again equates expected marginal revenue of production with marginal

cost. As in the case without binding price cap, when calculating expected marginal revenue,

the firm considers only those demand scenarios that generate positive prices (i.e. integration

starts at θQ). Marginal revenue in scenario θ is the standard expression until the price cap

is binding at θp̄, from there on, marginal revenue equals the price cap.

As it has become clear, in all cases with positive production, the first order condition

equates expected marginal revenue of production with marginal cost. Notice that theorem

1 covers degenerate uncertainty as a special case. Then, it holds that θ = θQ = θp̄ = θ

and, as p̄ approaches marginal cost c, production is always positive (and maximized).16

In particular, as compared to the situation without price cap, a binding price cap p̄ > c

implies for the corresponding equilibrium that (i) production weakly increases, and (ii)

total welfare weakly increases. We now investigate in how far those conclusions continue to

hold under genuine demand uncertainty. The following theorem characterizes an interval

of (high) binding price caps which, without any further assumptions on the distribution

F (θ), can be classified as production and welfare enhancing as compared to the situation

without price cap.

Theorem 2 (High Price Caps) Denote the equilibrium with the highest production by

Q∗h and by MR the highest marginal equilibrium revenue without binding price cap17. In

this equilibrium, a (binding) price cap p̄ ∈
[
MR, ρ̄∞

]
increases equilibrium production,

consumer surplus and total welfare, and lowers average prices as compared to the market

game without binding price cap.

Proof See appendix B. �

Given the equilibrium characterization in theorem 1, the intuition is straightforward:

Any price cap above the highest possible marginal equilibrium revenue without price cap

increases marginal revenue in all scenarios where it is binding (compared to the situation

without price cap). In the new equilibrium with binding price cap expected marginal

revenue must again be equal to marginal cost. This can only be achieved by decreasing

marginal revenue in scenarios with non–binding price cap, i.e. by increasing production.

Notice that even in cases where the equilibrium is unique we cannot make statements

about monotonicity, in particular we cannot characterize the best price cap in
[
MR, ρ̄∞

]
15Recall that we set z = 0 in the theorem. If z < 0, additional production yields a negative marginal

revenue equal to z in low demand scenarios, which would also appear in the first order condition. See the
appendix, where this more general case is analyzed.

16Note that we assumed that production is gainful, i.e. P (0) > c in case of certain demand.
17I.e. MR = maxθ{P (Q∗h(ρ̄∞), θ) + Pq(Q∗h(ρ̄∞), θ)Q

∗h(ρ̄∞)
n }
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without further assumptions on the distribution.18 Our result implies that the standard

comparative statics predictions (i.e. a price cap increases production and welfare as com-

pared to the situation without price cap) always hold for relatively high (but binding) price

caps also if demand is uncertain (i.e. not only for deterministic demand). We conclude that

high price caps are always desirable from a welfare point of view and that identification

of the best price cap in the specified interval obviously requires precise information on the

demand distribution.

For low price caps, on the contrary, this conclusion cannot generally be drawn. As it

is easily seen, if it holds that P (0, θ) < c, optimal production must be zero for price caps

close to marginal cost. The reason is that any strictly positive production would yield

expected marginal revenue lower than marginal cost. Thus, the lowest price cap that leads

to positive production may be bounded away from marginal cost, i. e. ρ̄0 > c. If, on the

contrary, it holds that P (0, θ) > c (i. e. positive production is welfare optimal even in the

lowest demand scenario), equilibrium production is positive as p̄↘ c. Note that for p̄↘ c

it must hold that θ = θQ = θp̄: Only if the price cap is binding from the lowest demand

realization on, it is guaranteed that the price never drops below c, i. e. that the firm makes

no losses in expectation. In other words, whenever equilibrium production is positive as

p̄↘ c, it coincides with the perfectly competitive quantity in the lowest demand scenario,

Q0.19

In the following theorem we show that in general production can increase or decrease

in the price cap at price caps close to marginal cost. We moreover provide monotonicity

results20 under a standard regularity assumption.

Theorem 3 (Price Caps Close to Marginal Cost)

(i) if P (0, θ) ≤ c, then production is zero for all p̄ ∈ [c, ρ̄0] and production is increasing

in p̄ at ρ̄0.

(ii) Suppose that P (0, θ) > c and Pq(Q
0, θ) + Pqq(Q

0, θ)Q
0

n
< 0 for all θ. Then, total

production as p̄↘ c equals Q0, and output is decreasing (increasing) in p̄ if

−Pq(Q
0, θ)

Pθ(Q0, θ)

Q0

n
f(θ) > (<)1.

Proof See appendix C. �

18We address this issue in theorem 7.
19Compare also Earle et al. (2007), theorem 3 and corollary 2.
20Notice that we assume a continuous distribution of θ. If uncertainty follows a discrete distribution,

then at a price cap close to marginal cost output is always decreasing in the price cap if, as p̄ ↘ c,
production is positive. Earle et al. (2007) analyze price caps close to marginal cost for distributions F that
are continuously differentiable on R and find that production is always increasing in p̄ for p̄ sufficiently close
to c. Our theorem 3 shows that their result does not always hold in the class of continuous distributions.
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From a policy perspective theorem 3 illustrates that price caps relatively close to

marginal cost may be desirable even under uncertain demand.21 We conclude that while

in many plausible cases both, production and welfare are zero or almost zero for price caps

close to marginal cost, depending on the distribution of θ, a price cap close to marginal cost

may even be optimal. Note, however, that even though a price cap at marginal cost may

be optimal, under demand uncertainty the welfare optimum can never be implemented by

any price cap.22

3.2 Free Disposal

We now consider the case that uncertainty is resolved after the firms’ production decisions

but before they decide on the quantities they want to sell. Firms may benefit from strategic

withholding in particular if demand turns out to be low. We assume that disposal is

costless.23

In the presence of free disposal we have to analyze a two stage game. At the first stage

firms decide on production quantities q(p̄) = (qi(p̄))i=1,...,n. Then, they learn the true state

of the world, θ. Once they know the state of the world, they decide on the quantities

y(q, p̄, θ) = (yi(q, p̄, θ))i=1,...,n they want to sell. We assume that in case the price cap

is binding the firms’ sales are as equal as possible.24 We make the following additional

regularity assumptions that have to be satisfied for quantities Q < Q̄(θ):

Assumption 2 (i) P (Q, θ) satisfies Pq(Q, θ) + Pqq(Q, θ)qi < 0 for all θ ∈ [θ, θ].

(ii) P (Q, θ)qi is (differentiable) strict supermodular in qi and θ, i. e. d2[P (Q,θ)qi]
dqidθ

> 0 for

all i, θ, and q−i.
25,26

We get the following result:

Theorem 4 (Equilibrium with Free Disposal) For any price cap p̄ > c, the
Cournot market game with free disposal has a unique equilibrium q∗(p̄) which is symmetric.
If equilibrium production is positive it is uniquely characterized by

Q∗(p̄) =

Q :

θ̃p̄(q,p̄)∫
θ̃Q(q,p̄)

[
P (Q, θ) + Pq (Q, θ)

Q

n

]
dF (θ) +

θ∫
θ̃p̄(q,p̄)

p̄dF (θ) = c

 , (3)

21See also theorem 7, where we show that if F has an increasing hazard rate, p̄ ↘ c is actually optimal
if q∗(p̄) is decreasing for p̄↘ c.

22We show this formally in the proof of theorem 2, in lemma 1.
23We do so mainly for easier exposition. All our results continue to hold if we assume additional cost of

selling (which could also be negative).
24Note that this does not imply that no asymmetric equilibria of the game exist. It does imply, however,

that if firms produce equal quantities, they always sell equal quantities if the price cap is binding.
25Throughout the paper q−i denotes the quantities produced by the firms other than i, and Q−i =∑
j 6=i qj .
26Part (ii) of the assumption is not essential. It makes it, however, much easier to write down expected

profits.
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where θ̃Q (q, p̄) ∈ [θ, θ] is the demand scenario from which on firms sell their entire pro-

duction and θ̃p̄(q, p̄) ∈ [θ, θ] is the demand scenario where the price cap starts to be binding

and firms sell their entire production.

Proof See appendix D. �

Note that the first order condition in theorem 4 follows the same intuition as in the case

without free disposal. However, unlike in theorem 1, we can establish uniqueness for all

possible price caps (not only for p̄↘ c as in the case without free disposal).

Analogously to the case without free disposal (theorems 2 and 3), we obtain the following

comparative statics results concerning the effect of price caps on equilibrium production,

average prices, and welfare.

Theorem 5 The statements of theorems 2 and 3 remain valid for the modified game with

free disposal.

Proof See appendix E �

In the free disposal case, we moreover find that under relatively mild assumptions on

the demand function27 the highest possible market price reached under perfect competition

could lend itself as a welfare enhancing price cap:

Theorem 6 (Price Cap at the Highest Competitive Price) Suppose demand

can be decomposed such that P (Q, θ) = a(θ) + b(θ)P̃ (Q) and denote the perfectly competi-

tive price in scenario θ by pPC(θ). A price cap p̄ = pPC(θ) always increases equilibrium

production, consumer surplus and total welfare, and lowers average prices as compared to

the market game without binding price cap.

Proof See appendix F. �

Note that from a policy maker’s perspective the result is actually very interesting. For

example in electricity markets28, regulators typically have quite detailed information on

marginal cost. Thus, calculating pPC(θ) by modeling the competitive benchmark seems

relatively easy, while basically nothing is known for the case of market power. The theorem

nicely connects the two scenarios of perfect competition and oligopoly, giving a clear cut

policy result.

3.3 Optimal Price Caps

As we have shown in sections 3.1 and 3.2, we can always identify a range of binding price caps

that are desirable from a welfare point of view, independently of the distribution of θ. This

27These do not seem necessary, but they allow for a very intuitive proof.
28Recall that with free disposal our model can also be interpreted as capacity choice under demand

uncertainty prior to a production decision once demand is known, compare Grimm and Zoettl (2006).
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finding clearly calls for a more precise characterization of optimal price caps, which is the

aim of this section. We focus on the case of free disposal, since the established uniqueness

result allows for a more clear cut analysis. Whenever in the case without disposal, given

P (Q, θ) and c, the equilibrium is unique for all p̄, our results apply to both cases.

In the following theorem we characterize the price cap that maximizes equilibrium pro-

duction. In order to do so we need to make regularity assumptions on the distribution of

θ.29

Theorem 7 (Optimal Price Cap) Suppose that demand can be decomposed such that

P (Q, θ) = θ + P̃ (Q) and that the hazard rate h(θ) := f(θ)
1−F (θ)

is increasing.30 Then there

exists a unique price cap p̄∗ which maximizes production. It holds that p̄∗ = c if production

is decreasing at p̄ = c. Otherwise p̄∗ is uniquely characterized by

−Pq(Q∗, θ̃p̄)
Q∗

n
=

1− F (θ̃p̄)

f(θ̃p̄)
. (4)

If it holds that p̄∗ = c, then p̄∗ is the welfare maximizing price cap. If p̄∗ > c, it holds that

p̄∗ is an upper bound for the welfare maximizing price cap.

Proof See appendix G. �

Let us point out the trade off that has to be solved at the production maximizing

price cap. Recall from theorems 1 and 4 that firms choose the quantity that just equates

expected marginal revenue of production with marginal cost. Lowering a given price cap

affects expected marginal revenue and thus, the firms’ production decisions. We observe two

effects: On the one hand, lowering the price cap by an increment decreases marginal revenue

in all scenarios where the price cap has been binding. The expected marginal loss equals

[1−F (θ̃p̄)]. On the other hand, the price cap becomes binding also in lower demand scenarios

and thereby marginally increases expected revenue by −Pq(Q∗, θ̃p̄)qif(θ̃p̄).31 Condition (4)

as stated in theorem 7 balances those two effects. Note that the first effect lowers production

incentives, while the second effect encourages production. At high price caps, the first effect

is necessarily small (since the range of demand scenarios for which the price cap is binding

is small), such that the second effect always dominates. Note that it depends on the exact

distribution of θ whether the production–maximizing price cap lies in
[
MR, ρ̄∞

)
, or below.

In particular, corner solutions where p̄∗ is arbitrarily close to c are also possible. We

illustrate our findings with a simple example in section 4.

29Recall that in theorem 2 and 5, we could not make statements about monotonicity without further
assumptions on the distribution.

30In order to prove the theorem it is sufficient to assume Pqθ = 0, such that demand can be decomposed
such that P (Q, θ) = v(θ) + P̃ (Q). Then, the hazard rate of the transformed random variable v(θ) would
have to be increasing. In the theorem we present a slightly less general statement for easier exposition.

31Note that marginal revenue in scenario θ without binding price cap is Pq(Q∗, θ)qi +P (Q∗, θ) and thus,
a binding price cap p̄ = P (Q∗, θ̃p̄) increases marginal revenue in scenario θ̃p̄ by −Pq(Q∗, θ̃p̄)qi > 0.
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Let us also discuss the welfare implications of our results. In the case without free

disposal, the production maximizing price cap always maximizes welfare. Furthermore, if

free disposal is possible, but firms do not have an incentive to withhold in any demand

scenario32, the price cap characterized in theorem 7 also maximizes welfare. In particular,

this holds true for any corner solution where p̄∗ ↘ c. If, on the other hand, firms withhold

a positive amount in equilibrium, the welfare maximizing price cap may be lower, but

never higher than p̄∗. The reason is that decreasing the price cap below p̄∗ on the one

hand decreases production but, on the other hand, eliminates the incentive to withhold in

additional demand scenarios such that the average quantity sold may increase and thus,

also total and consumer welfare. Price caps higher than p̄∗ lead to lower production without

having the desirable effect on the firms’ withholding decisions.

Let us finally briefly point out under what conditions the equilibrium is unique also in

the case without free disposal, such that our results also apply in this case.33 First of all, we

obtain uniqueness whenever it holds that θQ = θ (in which case the expected profit is always

concave). This holds true if either demand is not kinked (i.e. Q̄(θ) =∞ for all θ ∈ [θ, θ]), or

uncertainty is degenerate such that the price is above z even in the lowest demand scenario.

However, also for kinked demand functions expected profits are quasiconcave if we impose

restrictions on the distribution of θ (see our example in the next section). In all those cases

where there exists a unique equilibrium, the results of this section also apply in the case

without free disposal.

4 Discussion

In this section we illustrate our results both, in the free disposal and in the non–free disposal

case, using a numerical example.

Example 1 Suppose demand is given by P (Q, θ) = max{0, θ − Q}, where θ is uniformly

distributed with support [θ, 2]. There are two firms with constant marginal cost c = 1
2
. In

this particular example, the equilibrium is unique also in the case without free disposal. The

first order condition is given by∫ θp̄(q,p̄)

θQ(q,p̄)

(
θ − n+ 1

n
Q

)
dF (θ) +

∫ θ

θp̄(q,p̄)

p̄ dF (θ) = c,

where

θp̄(q, p̄) = min
{
θ,Q+ p̄

}
, θQ(q) = max {θ,Q} .

In the free disposal case the first order condition looks identical except for the fact that the

32That is, if θ̃Q = θ (compare the discussion of theorem 4).
33The following discussion requires that part (i) of assumption 2 holds in both models.
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limits of integration have to be substituted by

θ̃p̄(q, p̄) = min
{
θ,Q+ p̄

}
, θ̃Q(q, p̄) = max

{
θ,min

{
θ̃p̄,

n+ 1

n
Q

}}
.

Figure 1: Production as a function of the price cap for various values of θ.

Figure 1 shows aggregate production as a function of the price cap, Q∗(p̄), for several

values of θ ∈ [0, 2] for the free disposal case (black lines) and the case without free disposal

(grey lines). As the graph illustrates, both cases look qualitatively identical. For all values

of θ and p̄, it holds that production in the case without free disposal is lower than production

under free disposal.34 This is due to the fact that production is less profitable if prices cannot

be raised above zero unless the quantity is binding. Recall also that in the free disposal case,

the welfare maximizing price cap might be below the price cap that maximizes production

(but never above). For the case without free disposal, the welfare maximizing price cap

coincides with the price cap that maximizes production. This implies that whenever p̄ ↘ c

maximizes production, it is also welfare optimal to choose that price cap in both cases.

Notice that figure 1 nicely illustrates theorem 3 on low price caps (close to marginal

cost): For θ ∈ [0, 0.5), production is zero at price caps close to marginal cost (theorem 3,

part (i)). If very low demand scenarios are not possible (i.e. for θ > 0.5), production is

positive at price caps close to marginal cost. Obviously, it depends on the exact nature of

uncertainty whether production is increasing or decreasing in the price cap at this point

(theorem 3, part (ii)).

34For θ < 1.2 production is higher under free disposal, for θ ≥ 1.2 both cases collapse.
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Figure 2: The optimal price cap p̄∗, ρ̄0, and ρ̄∞ as a function of θ.

Figure 2 shows for both cases the production maximizing price cap (that also maximizes

welfare in the case without free disposal) as a function of θ. Obviously, the optimal price

cap is always below the lowest non–binding price cap, ρ̄∞, and decreases in θ, as it is implied

by theorems 2 and 7. For θ ∈ [1.5, 2], a price cap p̄↘ c maximizes production and welfare

since, as it is easily seen from figure 1, Q∗(p̄) is decreasing everywhere on (c, θ] (compare

the last part of theorem 7). Comparison with figure 1 moreover reveals that already for

θ > 1.25, a price cap p̄ ↘ c leads to higher production than no price cap (although the

optimal price cap is still higher than c).

In our example, the optimal price cap is always below the lower bound of the interval of

desirable price caps we identify in theorem 2 (except for the case of deterministic demand,

where the lower bound coincides with the optimal price cap). For low values of θ the optimal

price cap lies just outside the interval while for high values of θ it is considerably below the

lower bound of the interval.

5 Conclusion

In this article we have shown that in oligopoly under demand uncertainty, relatively high

price caps are always welfare enhancing while low price caps decrease production and welfare

in many genuine cases. We conclude that price caps ”far away” from marginal cost but

strictly below the lowest non–binding price cap are always desirable. As we have shown, this

holds independently of whether the firms can dispose of produced quantity, or not. We have

13



thoroughly investigated both cases and pointed out some important differences. For the

case of free disposal we identified the competitive price under the highest possible demand

realization to be a welfare enhancing price cap for any specification of uncertainty. This

result is particularly appealing since the highest competitive price can be easily calculated

if the regulator possesses information on marginal cost. We moreover characterized the

optimal price cap and showed that, depending on the nature of uncertainty, it might be

close to or well above marginal cost.

To summarize, our paper has shown that if we consider firms facing an uncertain demand

function, standard comparative statics results qualitatively continue to hold for high price

caps but not necessarily for low price caps. Contrary to the case of certain demand, however,

for genuine uncertainty the welfare optimum cannot be reached by imposing the optimal

price cap.
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A Proof of Theorem 1

Denote by θQ(q) = {max θ : P (Q, θ) = z} the demand scenario where the price rises above z

(we then say that production is ”binding”) and by θp̄(q, p̄) = {θ : p̄ = P (Q, θ)} the demand

realization where the price cap is met. Obviously it always holds that θQ(q) < θp̄(q, p̄),

since the price cap can only be met if the price rises above z (i. e. production is already

binding). The profit function is given by35

πi(q, p̄) =

θQ(q)∫
θ

zqidF (θ) +

θp̄(q,p̄)∫
θQ(q)

P (Q, θ)qidF (θ) +

θ∫
θp̄(q,p̄)

p̄qidF (θ)− cqi. (5)

Existence In order to prove existence we apply theorem 2.1 of Amir and Lambson (2000),

p. 239. They show that the standard Cournot oligopoly game has at least one symmetric

equilibrium and no asymmetric equilibria whenever demand P (·) is continuously differen-

tiable and decreasing, cost C(·) is twice continuously differentiable and nondecreasing and,

moreover, the cross partial derivative dπi(q,p̄)
dQ−idQ

> 0, where Q denotes total production and

Q−i production of the firms other than i. In order to see that the conditions required by

Amir and Lambson are satisfied in our setup, note that in our game firms choose output

given constant marginal cost and expected demand. Expected inverse demand is given by

EP (Q) =

θQ(q)∫
θ

zdF (θ) +

∫ θp̄(q,p̄)

θQ(q)

P (Q, θ) dF (θ) +

∫ θ

θp̄(q,p̄)

p̄dF (θ) . (6)

Note that dEP (Q)
dQ

=
∫ θp̄

θQ Pq(Q, θ)dF (θ) < 0, and thus, EP (Q) is strictly decreasing in Q.

Moreover, the cross partial derivative36

dπ2(q, p̄)

dQ−idQ
= −

θp̄(q,p̄)∫
θQ(q)

Pq(Q, θ)dF (θ) > 0

is positive. Thus, by Amir and Lambson (2000), theorem 2.1, there exists at least one

symmetric equilibrium and no asymmetric equilibria.

Characterization Since no asymmetric equilibria exist in our framework, we now focus
on the symmetric case and characterize equilibrium production. Denote the derivative of
πi(q, p̄) (equation (5)) with respect to qi by

Γ(q, p̄) =

θQ(q)∫
θ

zdF (θ) +

θp̄(q,p̄)∫
θQ(q)

[Pq(Q, θ)qi + P (Q, θ)] dF (θ) +

θ∫
θp̄(q,p̄)

p̄dF (θ)− c, (7)

35Note that for θ < θQ(q) profits are zero if z = 0.
36See Amir and Lambson (2000), p. 238.
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Note that dπi

dqi
> 0 at Q = 0 (since production is assumed to be gainful), that dπi

dqi
< 0

for some finite value of Q, and that dπi

dqi
is continuous. Thus, we have at least one point

where (2) is satisfied and dπi

dqi
is decreasing. The characterization of equilibrium as given in

theorem 1 follows straightforwardly (for easier exposition we have set z equal to zero in the

theorem).

B Proof of Theorem 2

We first show that MR < ρ̄∞, i.e the interval [MR, ρ̄∞] of improving price caps is al-

ways non–empty. To see this, denote by θMR ≤ θ the scenario where marginal revenue

is maximized. Note that by assumption 1, part (ii), prices are strictly increasing in θ,

and thus, it holds that ρ̄∞ = P (Q∗h(ρ̄∞), θ) > P (Q∗h(ρ̄∞), θMR). Moreover, note that

P (Q∗h(ρ̄∞), θMR) > P (Q∗h(ρ̄∞), θMR) + Pq(Q
∗h(ρ̄∞), θMR)Q

∗h(ρ̄∞)
n

= MR(Q∗h(ρ̄∞), θMR),

since Pq(Q, θ) < 0 by assumption 1, part (i). Consequently, it holds that ρ̄∞ =

P (Q∗h(ρ̄∞), θ) > MR(Q∗h(ρ̄∞), θMR) = MR.

1) In order to prove that a price cap p̄ ∈ [MR, ρ̄∞] increases production in the highest

equilibrium, we pointwisely compare first order conditions for the respective values of Q.

Define Q̂ = {Q : P (Q, θ) = c} and

Γ(q, p̄) =

θQ(q)∫
θ

zdF (θ) +

θp̄(q,p̄)∫
θQ(q)

[
P (Q, θ) + Pq (Q, θ)

Q

n

]
dF (θ) +

θ∫
θp̄(q,p̄)

p̄dF (θ)− c. (8)

Notice that Γ(q, p̄) is just the first order condition as given in theorem 1. Given p̄, Γ is a

continuous function. Now note that for Q ≥ Q̂ it holds that θQ ≤ θp̄ = θ and P (Q, θ) ≤ c,

and thus, Γ(q, p̄) < 0 for all p̄. Denote equilibrium production in absence of a price cap by

Q∗∞ := Q∗h(ρ̄∞). Q∗∞ is the highest element solving

Γ(q, ρ̄∞) =

θQ(q∗∞)∫
θ

zdF (θ) +

θ∫
θQ(q∗∞)

[
P (Q∗∞, θ) + Pq (Q∗∞, θ)

Q∗∞

n

]
dF (θ)− c = 0.

Now introduce a price cap p0 ∈ [MR, ρ̄∞]. It holds that

Γ(q∗∞, p̄0) =

θQ(q∗∞)∫
θ

zdF (θ) +

θp̄(q∗∞,p̄0)∫
θQ(q∗∞)

[
P (Q∗∞, θ) + Pq (Q∗∞, θ)

Q∗∞

n

]
dF (θ)

+

θ∫
θp̄(q∗∞,p̄0)

p̄0 dF (θ)− c ≥ 0.

17



To see this, note first that θQ (q∗∞) does not depend on p̄. Moreover, note that with binding

price cap p̄ ∈ [MR, ρ̄∞] the integrand is pointwisely bigger than without binding price cap:

if the price cap binds for some θ but before only production was binding, the integrand is

increased. The reason is that the price cap is always higher than marginal revenue in any

scenario (and marginal revenue is just the integrand in the first order condition without

binding price cap).

Since Γ(·, p̄) is a continuous function and since Γ(q∗∞, p̄0) > 0 and Γ(q, p̄0) < 0, by the

Mean Value Theorem there must exist at least one solution to Γ(q, p̄0) = 0 that satisfies

Γq(q, p̄
0) < 0 in the interval ]Q∗∞, Q̂[. Obviously, the highest of these solutions is Q∗h(p̄0).

It obviously holds that Q∗h(p̄0) > Q∗∞.

Note that we cannot establish monotonicity results without further assumptions on the

distribution F (θ), but for any distribution production in the highest equilibrium is higher

in the presence of a binding price cap p̄ ∈ [MR, ρ̄∞] than without a binding price cap.

2) Since production is always increasing for any price cap p̄ ∈ [MR, ρ̄∞] (as compared to

no price cap), consumer surplus also increases.

3) In order to show that also total welfare always increases if a price cap price cap p̄ ∈
[MR, ρ̄∞] is chosen (as compared to no price cap) we first show the following

Lemma 1 Denote welfare optimal production given p̄ by Q∗∗(p̄). It always holds that

Q∗(p̄) < Q∗∗(p̄).

Proof Welfare is given as follows,

W (Q) =

θ∫
θ

Q∫
0

P (X, θ)dXdF (θ)− cQ. (9)

Differentiation with respect to Q yields

dW (Q)

dQ
=

θQ(q)∫
θ

zdF (θ) +

θ∫
θQ(q)

P (Q, θ)dF (θ)− c, (10)

and the welfare optimum is given by

Q∗∗ =

Q :

θQ(q)∫
θ

zdF (θ) +

θ∫
θQ(q)

P (Q, θ)dF (θ) = c

 , (11)

where θQ(q) is the critical value of θ from which on production is binding.
Now consider the first order condition given in theorem 1 for a given price cap,

dπi(q, p̄)
dQ

=

θQ(q)∫
θ

zdF (θ) +

θp̄(q,p̄)∫
θQ(q)

(
P (Q, θ) + Pq(Q, θ)

Q

n

)
dF (θ) +

θ∫
θp̄(q,p̄)

p̄dF (θ)− c, (12)
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In order to prove the lemma, we now show that for any fixed Q and for any p, we obtain
dW (Q)
dQ

> dπi(q,p̄)
dQ

. We can get by pointwise inspection that for θ ∈ [θQ, θp̄] we have P >

P + Pq
Q
n

and for θ ∈ [θp̄, θ] we have P (Q, θ) ≥ p̄.

Whenever the distribution of uncertainty has strictly positive mass for two different

values of θ, i.e. f(θ) > 0 and f(θ′) > 0, where θ′ ∈]̃̃θQ(q∗∗), θ[, then it holds that dW (Q̂)
dQ

>
dπi(q̂,p̄)
dQ

for all values of Q and p̄. The above First order conditions will never coincide, since

welfare is strictly concave. we can conclude that Q∗(p̄) < Q∗∗(p̄) for all p̄. �

Now we have shown that production increases by setting a price cap p̄ ∈ [ρ̄∞, ρ̄∞), but

remains below the welfare optimal level. Since expected welfare as given by (9) is a concave

function, expected total welfare with price cap obviously is higher than without price cap.

4) Finally we show that average prices are well defined and decrease in the relevant range.

For a given Q∗(p), average prices are uniquely given by

E [P ] =

∫ θQ(q∗h(p̄))

θ

zdF (θ)

+

∫ θp̄(q∗h(p̄),p̄)

θQ(q∗h(p̄))

P (Q∗h(p), θ)dF (θ) +

∫ θ

θp̄(q∗h(p̄),p̄)

pdF (θ). (13)

If we lower pricecaps from ρ̄∞ to some p̄0 ∈ [MR, ρ̄∞], average prices are affected as follows.

For the limits of integration in (13) it holds that θQ(q∗h(p̄)) and θp(q∗h(p̄)) increase. For

the integrands it holds that P (Q∗∞, θ) > P (Q∗h(p̄), θ) and ρ̄∞ > p̄0. Thus, average prices

decrease.

C Proof of Theorem 3

Preliminaries: Concavity of πi for p̄ close to ρ̄0. To prove the theorem we apply

the Implicit Function Theorem in order to derive dQ∗(p̄)
dp̄

. To be able to do this, we need to

make sure that d2πi

dqdQ
< 0 holds for price caps close to ρ̄0 (which is either at marginal cost

or above, see definition 1). We first show that for p̄ close to ρ̄0 it always holds that θQ = θ,

and then, that this implies d2πi

dqdQ
< 0.

First consider the case Q0 > 0. Then, it holds that ρ̄0 = c, i.e. production is strictly

positive (and equal to Q0) as p̄ ↘ c. Then, for p > c and p close to c it holds that Q∗(p̄)

is close to Q0. In fact, we can get arbitrarily close to Q0 by choosing an appropriate p > c.

Now define

θ̂Q(q) = {θ : P (Q, θ) = z}

and note that

θQ(q) = max[θ, θ̂Q(q)] (14)
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Also recall that Q0 is defined by the following equation,

P (Q0, θ) = c. (15)

Now note that it follows that θ̂Q(q0) = {θ : P (Q0, θ) = z} < θ for p̄ close enough to c (recall

that c > z). Thus, θQ(q∗(p̄)) = θ, as asserted.

Now consider the case Q0 = 0. Then, it holds that P (0, θ) < c and θ̂Q = {θ : P (0, θ) =

z}. Thus, θ̂Q < θ, which implies θQ = θ.

Moreover, for p̄ > c and p̄ close to c, it always holds that θp̄ > θ. To see this, consider

the first order condition,∫ θp̄

θ

P (Q, θ) + Pq(Q, θ)
Q

n
dF (θ) +

∫ θ

θp̄

p̄dF (θ) = c (16)

For θp̄ = θ we would have
∫ θ
θ
p̄dF (θ) > c for p̄ > c, and thus also for p̄ close to c it must

hold that θp̄ > θ. Only in the limit, as p̄↘ c we obtain θp̄ = θ.

Consequently, for p̄ > c and p̄ close to c, it holds that the derivative d2πi(q,p̄)
dqidQ

is given by

d2πi(q, p̄)
dqidQ

=

θp̄∫
θ

[(
1 +

1
n

)
Pq(Q, θ) + Pqq(Q, θ)

Q

n

]
dF (θ) +

dθp̄

dQ
Pq(Q, θ)

Q

n
f(θp̄) < 0

Thus, profits are concave for p̄ > c and p̄ close to c, and we can apply the Implicit Function

Theorem in the neighborhood of ρ̄0.

We now derive dQ∗(p̄)
dp̄

and then evaluate it the neighborhood ofQ0, as defined in definition

1 (which is the equilibrium production as p̄↘ c). We start from the equilibrium condition
characterized in theorem 1, assuming that p̄ is close to c such that it holds that θQ = θ.

∂πi(q, p̄)
∂qi

=

θp̄(q∗,p̄)∫
θ

[
P (Q∗, θ) + Pq (Q∗, θ)

1
n
Q∗
]
dF (θ) +

θ∫
θp̄(q∗,p̄)

p̄dF (θ)− c = 0.

Applying the Implicit Function Theorem yields37

dQ∗(p̄)
dp̄

= −∂
2πi(q, p̄)
∂qi∂p̄

/
∂2πi(q, p̄)
∂qi∂Q

=
[
Pq(Q∗, θp̄)
Pθ(Q∗, θp̄)

Q∗(p)
n

f (̃̃θp̄) + 1− F (θp̄)
]/
−∂

2πi(q, p̄)
∂qi∂Q

, (17)

Notice that the denominator of (25) is always strictly positive since, as shown above, profits
are strictly concave for p̄ close to ρ̄0. Thus, it holds that

dQ∗(p̄)
dp̄

> (<)0 ⇔ Pq(Q∗, θp̄)
Pθ(Q∗, θp̄)

Q∗(p̄)
n

f(θp̄) + 1− F (θp̄) > (<)0

Note that as p̄↘ c, it holds that Q∗(p̄)↘ Q0 and θp̄ ↘ θ. Thus, in the limit, the following
holds,

dQ∗(p̄)
dp̄

∣∣∣∣
p̄↘c

> (<)0 ⇔ Pq(Q0, θ)
Pθ(Q0, θ)

Q0

n
f(θ) + 1 > (<)0,

which yields the condition given in the theorem.

37Notice that ∂θp̄

∂p̄ = 1
Pθ

follows immediately from partial differentiation of P (Q, θp̄(q, p̄)) ≡ p̄.
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D Proof of Theorem 4

Existence and Uniqueness In Grimm and Zoettl (2006) we show that the Cournot

market game in absence of a price cap has a unique equilibrium which is symmetric (lemma

1). The assumptions under which the result can be shown are a bit more general than our

assumptions 1 and 2 (in particular we allow for convex cost at both stages, production and

sales38).

Now consider the following modified demand function that captures the situation that

firms face a given price cap.

P̄ (Q, θ) =

{
p̄ if 0 ≤ Q ≤ Qp̄(θ)

P (Q, θ) if Q > Qp̄(θ),
(18)

where Qp̄(θ) = {Q : P (Q, θ) = p̄}.
Note that P̄ (Q, θ) does not satisfy assumptions 1 and 2 and thus, the proof in Grimm

and Zoettl (2006) does not directly apply to the case of a price cap. We have to deal with

two issues:

(i) The fact that P̄q(Q, θ) = 0 for Q ∈ [0, Qp̄(θ)]. This implies that, given θ, the equilib-

rium at the second stage is not necessarily unique, which leads potentially to multiple

equilibria of the overall game. Our assumption that for a binding price cap, sales are

as equal as possible (see section 3.2) overcomes this problem. It can be interpreted

either as (i) a special equilibrium selection39, or (ii) as analyzing only a special class

of equilibria of the overall game, focusing on symmetric outcomes at the second stage.

(ii) Furthermore demand P̄ (Q, θ) is kinked at Qp̄(θ). This implies that firms’ stage two

profits are not twice continuously differentiable. It seems obvious that this kink does

not pose any problems when carrying through the proof along the lines of the proof of

lemma 1 in Grimm and Zoettl (2006) since the kink is concave. Since the computations

are mainly redundant to the proof conducted in Grimm and Zoettl (2006) (the only

difference being the concave kink) they are not reported in detail here.

We conclude that the Cournot market game with free disposal has a unique equilibrium

which is symmetric.

Characterization of Equilibrium Since from Grimm and Zoettl (2006) it follows that

no asymmetric equilibria exist in our framework, we now focus on the symmetric case and

characterize equilibrium production.

38The story behind the model in Grimm and Zoettl (2006) is that firms invest in capacity (denoted x in
that paper) at the first stage and then produce at the second stage (production is denoted by q). Thus, the
investment stage is equivalent to the production stage in this paper and the production stage is equivalent
to the sales stage here. The notation has to be adapted accordingly.

39Note that this would be the unique equilibrium at the second stage if even for a binding price cap,
inverse demand would have an (infinitely small) slope.
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Let us first consider profits for each realization of θ, given q and p̄. Recall that firms may

sell strictly less than their production. Denote by Ŷ (θ) the unrestricted Cournot equilibrium

quantity in scenario θ, which may be higher than Q. Denote by Y ∗(q, θ) equilibrium sales

in scenario θ, i. e. Y ∗(q, θ) = min{Ŷ (θ), Q}. Profits in scenario θ, given q and p̄, are

πi(q, p̄, θ) =

{
P (Y ∗(q, θ), θ)y∗i (q, θ) if p̄ ≥ P (Y ∗(q, θ), θ)

p̄Y
p̄(q,θ)
n

if p̄ < P (Y ∗(q, θ), θ)
, (19)

where Y p̄(q, θ) = min(Q, {Y : p̄ = P (Y, θ)}) Note that if production is binding it holds that

Y ∗(q, θ) = Q, otherwise Y ∗(q, θ) < Q. If production is binding, two cases are possible: (i)

the firms do not have an incentive to withhold, but the price cap is not yet met; (b) the

price cap is effective and the firms sell their whole production40. Let us denote by θ̃Q(q, p̄)

the demand scenario from which on the firms sell their entire production and by θ̃p̄(q, p̄)

the demand realization where firms sell their entire production and the price cap is met.

θ̃p̄(q, p̄) and θ̃Q(q, p̄) are implicitly defined as follows:

θ̃p̄(q, p̄) = {θ : p̄ = P (Q, θ)}
θ̃Q(q, p̄) = min

(
θ̃p̄(q, p̄), {θ : Pq(Q, θ)q + P (Q, θ) = 0}

)
Since in θ ∈ [θ̃Q(q, p̄), θ] the price is monotonically increasing in θ, profits in this interval

are given by

πi(q, p̄, θ) =

{
P (Q, θ)qi for θ ∈ [θ̃Q(q, p̄), θ̃p̄(q, p̄)]

p̄qi for θ ∈ [θ̃p̄(q, p̄), θ]
, (20)

Denote πi(q, p̄, θ)|θ<θ̃Q(q,p̄) = π0
i (p̄, θ). Now we are in the position to write down a firm’s

expected profits at stage one,

πi(q, p̄) =

θ̃Q(q,p̄)∫
θ

π0
i (p̄, θ)dF (θ) +

θ̃p̄(q,p̄)∫
θ̃Q(q,p̄)

P (Q, θ)qidF (θ) +

θ∫
θ̃p̄(q,p̄)

p̄qidF (θ)− cqi.

Differentiation yields the first order condition (note that π0
i (p̄, θ) does not depend on qi

and that the derivatives of the integration limits cancel out due to Leibnitz’ rule)

dπi(q, p̄)
dqi

=

θ̃p̄(q,p̄)∫
θ̃Q(q,p̄)

[Pq(Q, θ)qi + P (Q, θ)] dF (θ) +

θ∫
θ̃p̄(q,p̄)

p̄dF (θ)− c = 0. (21)

From (21) the equilibrium characterization in Theorem 4 can be easily derived. If the

price cap does not bind in any demand scenario, it holds that θ̃p̄(q, p̄) = θ and the second

40Note that if at a certain θ the whole production is sold a the price cap, then the price cap is also binding
in any higher demand scenario. This monotonicity does not hold, however, in demand scenarios where firms
withhold quantity. Assumption 2, part (ii), guarantees that the Cournot quantity Ŷ (θ) is increasing in θ.
It does not guarantee, however, that equilibrium prices are increasing in θ. Consequently, as θ increases,
the price cap might be binding for low realizations and non–binding for higher ones.
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integral on the LHS of the first order condition cancels out. If θ̃p̄(q, p̄) < θ, the price cap is

binding in some demand scenarios. Two cases are possible: (1) production is binding before

the price cap is met (θ̃Q(q, p̄) < θ̃p̄(q, p̄)), or production and price cap become binding in

the same demand scenario (θ̃Q(q, p̄) = θ̃p̄(q, p̄)). The latter case occurs whenever marginal

revenue in scenario θ̃p̄(q, p̄) is negative.

E Proof of Theorem 5

For high price caps p̄ ∈ [MR, ρ̄∞), ρ̄∞] the proof goes along the same lines as the proof of

theorem 2.
For low price caps p̄ ↘ c, the result is proven along the same lines as theorem 3. The

main difference is that under free disposal the equilibrium is unique and expected profits
are strictly concave for all p̄. To see this, we derive

d2πi(q, p̄; y∗)
dqidQ

=
∫ θ̃p

θ̃Q

(
Pq(Q, θ)

(
1 +

1
n

)
+ Pqq(Q, θ)

Q

n

)
dF (θ) +

dθ̃p̄

dQ
Pq(Q∗, θ̃p̄)

Q∗

n
f(θ̃p̄)

Note that the first term is strictly negative (by assumption 1, part (ii)) whenever it holds

that θ̃Q < θ̃p̄, and zero otherwise. The second term is always strictly negative since θ has

full support.

F Proof of Theorem 6

The Competitive Equilibrium Denote by Q∗PC equilibrium investment under perfect

competition in absence of a price cap. The proof of existence and uniqueness follows the

same lines as the proof in case of oligopoly (theorem 4). Note that under perfect competition

firms do not strategically withhold produced quantity. Thus, the price rises above z only if

θ > θQ, as defined in the proof of theorem 1 (note that we do not need a critical value of θ

where the price cap is met since we only consider the case of non–binding price caps). The

profit function under perfect competition is given by41

πi(q, p̄) =

θ∫
θQ(q)

P (Q, θ)qidF (θ)− cqi.

Thus, the first order condition of a perfectly competitive firm (that cannot affect the market

price by changing its quantity) is given by

θ∫
θQ(q)

P (Q, θ)dF (θ) = c. (22)

41Note that for θ < θQ(q, p̄) profits are zero.
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Equivalence of pPC and MR Now assume that demand can be decomposed such that
P (Q, θ) = a(θ) + b(θ)P̃ (Q) where a(θ), b(θ), and P̃ (Q) are such that assumptions 1 and 2
are satisfied. We show that, in absence of a price cap, the perfectly competitive equilibrium
price just equals marginal equilibrium revenue in a market with a finite number of firms,
i. e.

P (Q∗PC , θ) = P (Q∗∞, θ) + Pq(Q∗∞, θ)
Q∗∞

n
∀ θ ∈ [θ̃Q(q∗∞) = θQ(q∗∞), θ],

Thus, setting the highest price observed in the perfectly competitive benchmark is equiv-

alent to setting the lowest price from the interval of welfare increasing price caps identified

in theorem 2.

We now show that in absence of a price cap the equilibria of the market game under

perfect competition and the Cournot market game with free disposal can be characterized

by the same condition. To this end, define T (Q∗PC) := P̃ (Q∗PC) and T (Q∗∞) := P̃ (Q∗∞) +

P̃q(Q
∗∞)Q

∗∞

n
(recall that Q∗PC denotes total equilibrium quantity under perfect competition,

while Q∗∞ denotes the Cournot outcome). Observe that the unique equilibrium production

in both cases is characterized by the following equation,

θ∫
θ̃T

(a(θ) + b(θ)T ) dF (θ) = c, (23)

where θ̃T = {θ : a(θ) + b(θ)T = 0}.
Thus both, the solution under perfect competition and under imperfect competition

involve an identical value T ∗ solving (23). For all θ ∈ [θT
∗
, θ] we obtain

a(θ) + b(θ)T ∗ = P (Q∗PC , θ) = P (Q∗∞, θ) + Pq(Q
∗∞, θ)

Q∗∞

n
.

G Proof of Theorem 7

We prove theorem 7 by setting dQ∗(p̄)
dp̄

equal to zero. We then show that for an increasing

hazard rate and Pqθ = 0, Q∗(p̄) is quasiconcave by proving d2Q∗(p̄)
dp̄2

∣∣∣
dQ∗(p̄)

dp̄
=0
< 0.

Preliminaries As a first step we derive properties and slopes of θ̃p̄(q, p̄). Notice that at

the demand realization where the price cap is met in equilibrium it holds that

P (Q, θ̃p̄(q, p̄)) ≡ p̄

We first calculate the partial derivative by differentiation with respect to p̄ given some fixed
Q,42

∂θ̃p̄(q, p̄)
∂p̄

=
1

Pθ(Q, θ̃p̄)
= 1.

42Note that Pθ = 1 under our assumptions.
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Now we derive the total derivative at Q∗(p̄),

Pq(·)
dQ∗(p̄)
dp̄

+ Pθ(·)
dθ̃p̄(q∗(p̄), p̄)

dp̄
= 1 ⇔ dθ̃p̄(q∗(p̄), p̄)

dp̄
= 1− Pq(Q∗, θ)

dQ∗(p̄)
dp̄

. (24)

Characterization of p̄∗ Now recall from the proof of theorem 5 that under free disposal
expected profits are strictly concave for all p̄. Thus, we can apply the Implicit Function
Theorem in order to derive dQ∗(p̄)

p̄
. Differentiation of the first order condition

θ̃p̄(q∗,p̄)∫
θ̃Q(q∗,p̄)

[
P (Q∗, θ) + Pq (Q∗, θ)

1
n
Q∗
]
dF (θ) +

θ∫
θ̃p̄(q∗,p̄)

p̄dF (θ)− c = 0.

with respect to p̄ yields

dQ∗(p̄)
dp̄

= −∂
2πi(q, p̄)
∂qi∂p̄

/
∂2πi(q, p̄)
∂qi∂Q

=

[
Pq(Q∗, θ̃p̄)
Pθ(Q∗, θ̃p̄)

Q∗(p)
n

f(θ̃p̄) + 1− F (θ̃p̄)

]/
−∂

2πi(q, p̄)
∂qi∂Q

, (25)

Notice that it may happen that θ̃p̄ (q∗, p̄) = θ̃Q (q∗, p̄), in which case it holds that

−Pq(Q∗, θ̃p̄)
Q∗

n
= −Pq(Q∗, θ̃Q)

Q∗

n
= P (Q∗, θ̃Q) = P (Q∗, θ̃p̄) = p̄

(we denote this type of equilibrium by EQII , and the other type by EQI in the following).
Rewriting equation (25) using the hazard rate yields

EQI :
dQ∗(p̄)
dp̄

=
[
Pq(·)

Q∗(p)
n

+
1

h(θ̃p̄)

]/[
−∂πi(q, y

∗)
∂qi∂Q

1
f(θ̃p̄)

]
(26)

EQII :
dQ∗(p̄)
dp̄

=
[
−p̄+

1
h(θ̃p̄)

]/[
−∂πi(q, y

∗)
∂qi∂Q

1
f(θ̃p̄)

]
(27)

Define ξ(p̄) =
[
−∂πi(q,y

∗)
∂qi∂Q

1
f(θ̃p̄)

]
. Note that it holds that ξ(p̄) > 0 since profits (along the

symmetry line) are concave. Thus, dQ∗(p̄)
dp̄

= 0 gives exactly the characterization of the

production maximizing price caps as stated in the theorem.
In order to show existence and uniqueness of these maximizers, however, we also need to

show that second order conditions are satisfied, namely d2Q∗(p̄)
dp̄2

∣∣∣
dQ∗(p̄)

dp̄
=0
< 0. Differentiation

of (26) and (27) with respect to p̄ yields43

EQI :
d2Q∗(p̄)
dp̄2

=
1

ξ(p̄)2

[(
dQ∗(p̄)
dp̄

(
Pqq

Q∗(p̄)
n

+ Pq

)
− hθ(θ̃p̄)
h2(θ̃p̄)

dθ̃p̄

dp̄

)
ξ(p̄)

−dQ
∗(p̄)
dp̄

ξ(p̄)ξp̄(p̄)
]

EQII :
d2Q∗(p̄)
dp̄2

=
1

ξ(p̄)2

[
−

(
1 +

hθ(θ̃p̄)
h2(θ̃p̄)

dθ̃p̄

dp̄

)
ξ(p̄)− dQ∗(p̄)

dp̄
ξ(p̄)ξp̄(p̄)

]

43Notice that Pqθ = Pθθ = 0 and that dθ̃p̄

dp̄ = 1 at dQ∗(p̄)
dp̄ = 0. Moreover, dQ

∗(p̄)
dp̄ ξi(p̄) is just the enumerator

of expressions (26) and (27).
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We get

EQI :
d2Q∗(p̄)
dp̄2

∣∣∣∣
dQ∗(p̄)
dp̄ =0

= − 1
ξ(p̄)

hθ(θ̃p̄)
h2(θ̃p̄)

< 0

EQII :
d2Q∗(p̄)
dp̄2

∣∣∣∣
dQ∗(p̄)
dp̄ =0

= − 1
ξ(p̄)

(
1 +

hθ(θ̃p̄)
h2(θ̃p̄)

)
< 0

Thus, under our assumptions all (local) extrema are necessarily maxima. Since we have a

local minimum at p = ρ̄∞, we conclude that either our first order condition characterizes

the unique production maximizing price cap if dQ∗(p̄)
dp̄
|p̄=c > 0, otherwise p̄ = c is optimal.
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